首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4维向量组 a1=(1+a,1,1,1)T,a2=(2,2+a,2,2)T,a3=(3,3,3+a,3)T,a4=(4,4,4,4+a)T,问a为何值时,a1,a2,a3,a4线性相关?当a1,a2,a3,a4线性相关时,求其一个极大线性无关组,并将其
设4维向量组 a1=(1+a,1,1,1)T,a2=(2,2+a,2,2)T,a3=(3,3,3+a,3)T,a4=(4,4,4,4+a)T,问a为何值时,a1,a2,a3,a4线性相关?当a1,a2,a3,a4线性相关时,求其一个极大线性无关组,并将其
admin
2020-01-15
50
问题
设4维向量组 a
1
=(1+a,1,1,1)
T
,a
2
=(2,2+a,2,2)
T
,a
3
=(3,3,3+a,3)
T
,a
4
=(4,4,4,4+a)
T
,问a为何值时,a
1
,a
2
,a
3
,a
4
线性相关?当a
1
,a
2
,a
3
,a
4
线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表出.
选项
答案
对(a
1
,a
2
,a
3
,a
4
)作初等行变换,有 (a
1
,a
2
,a
3
,a
4
)=[*] 若a=0,则秩r(a
1
,a
2
,a
3
,a
4
)=1,a
1
,a
2
,a
3
,a
4
线性相关.可取极大线性无关组为a
1
,且a
2
=2a
1
,a
3
=3a
1
,a
4
=4a
1
. 由于a≠0,继续作初等行变换有 (a
1
,a
2
,a
3
,a
4
)[*] 所以,当a=-10时,r(a
1
,a
2
,a
3
,a
4
)=3,a
1
,a
2
,a
3
,a
4
线性相关, 可取极大线性无关组为a
2
,a
3
,a
4
,且a
1
=-a
2
-a
3
-a
4
.
解析
转载请注明原文地址:https://kaotiyun.com/show/fHA4777K
0
考研数学二
相关试题推荐
=_______.
没函数f(μ)可微,且f’(0)=,则z=f(4x2一y2)在点(1,2)处的全微分dz|(1,2)=_________。
求=________.
z=f(xy)+yg(x2+y2),其中f,g二阶连续可导,则=_____
已知向量组(I):α1,α2,α3;(II):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α5.如果各向量组的秩分别为r(I)=r(Ⅱ)=3,r(Ⅲ)=4.证明向量组α1,α2,α3,α5-α4的秩为4.
设z=f(χ,y)是由方程z-y-χ+χeχ-y-z=0所确定的二元函数,求dz.
设f(x)定义在(a,b)上,c∈(a,b).又设H(x),G(x)分别在(a,c],[c,b)连续,且分别在(a,c)与(c,b)是f(x)的原函数.令其中选常数C0,使得F(x)在x=c处连续.就下列情形回答F(x)是否是f(x)在(a,b)的原
求曲线r=的斜渐近线.
已知,y1=x,y2=x2,y3=ex为方程y’’+p(x)y’+q(x)y=f(x)的三个特解,则该方程的通解为()
极限=_____________。
随机试题
我国将货币供应量划分为四个层次,其中第三个层次,即M2包括外币存款和()。
借贷记账法下的试算平衡公式有()。
颅内压增高的三主征包括()。
在某侵权诉讼中,被告李某17岁,其所在的居委会指定李某的舅舅周某作为其诉讼代理人。李某与周某之间的这种代理关系属于()。
以最大能力法计算项目贷款偿还期,是指项目本身投产以后产生的可还款资金偿还项目贷款所需的时间。()
中国社科院世界社保研究中心发布《中国养老金发展报告2012》。报告显示,2010年有15个省份收不抵支,缺口达679亿元;2011年收不抵支的省份虽然减少到14个,但收支缺口高于2010年,2011年达766.5亿元。报告分析显示,我国养老金地区
下列各句中,意思明确、没有语病的一句是()。
大义凛然:卑躬屈膝
根据所给材料,回答问题。青霉素问世后,抗生素成了人类战胜病菌的神奇武器。然而,人们很快发现,虽然新的抗生素层出不穷,但是,抗生素奈何不了的耐药菌也越来越多,耐药菌的传播令人担忧。2003年的一项关于幼儿园儿童口腔卫生情况的研究发现,儿童口腔细菌约
WhyarevisitorstoBritainalwayscomplainingaboutEnglishfood?
最新回复
(
0
)