首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,x2)=(1-a)x12+(1-a)x22+2x32+2(1+a)x1x2的秩为2. (Ⅰ)求a的值; (Ⅱ)求正交变换x=Qy,把f(x1,x2,x3)化成标准形; (Ⅲ)求方程f(x1,x2,x3)=0的解.
已知二次型f(x1,x2,x2)=(1-a)x12+(1-a)x22+2x32+2(1+a)x1x2的秩为2. (Ⅰ)求a的值; (Ⅱ)求正交变换x=Qy,把f(x1,x2,x3)化成标准形; (Ⅲ)求方程f(x1,x2,x3)=0的解.
admin
2016-10-20
55
问题
已知二次型f(x
1
,x
2
,x
2
)=(1-a)x
1
2
+(1-a)x
2
2
+2x
3
2
+2(1+a)x
1
x
2
的秩为2.
(Ⅰ)求a的值;
(Ⅱ)求正交变换x=Qy,把f(x
1
,x
2
,x
3
)化成标准形;
(Ⅲ)求方程f(x
1
,x
2
,x
3
)=0的解.
选项
答案
(Ⅰ)二次型矩阵A=[*].二次型的秩为2,即二次型矩阵A的秩为2, 从而 |A|=[*]=-8a=0,解得a=0. (Ⅱ)当a=0时,A=[*],由特征多项式 |λE-A|=[*]=(λ-2)[(λ-1)
2
-1]=λ(λ-2)
2
, 得矩阵A的特征值λ
1
=λ
2
=2,λ
3
=0. 当λ=2时,由(2E-A)x=0,[*] 得特征向量α
1
=(1.1.0)
T
.α
2
=(0,0,1)
T
. 当λ=0时,由(0E-A)x=0,[*],得特征向量α
3
=(1,-1,0)
T
. 容易看出,α
1
,α
2
,α
3
已两两正交,故只需将它们单位化: [*] (Ⅲ)由f(x
1
,x
2
,x
3
)=x
1
2
+x
2
2
+2x
3
2
+2x
1
x
2
=(x
1
+x
2
)
2
+2x
3
2
=0,得[*] 所以方程f(x
1
,x
2
,x
3
)=0的通解为:k(1,-1,0)
T
,其中k为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/faT4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 B
求下列初值问题的解:(1)y〞-3yˊ+2y-1,y|x=0=2,yˊ|x=0=2;(2)y〞+y+sin2x=0,y|x=π=1,yˊ|x=π=1;(3)y〞-yˊ=2(1-x),y|x=0=1,yˊ|x=0=1;(4)y〞+y=ex+cosx,
利用函数的凹凸性,证明下列不等式:
代数学基本定理告诉我们,n次多项式至多有n个实根,利用此结论及罗尔定理,不求出函数f(x)=(x-1)(x-2)(x-3)(x-4)的导数,说明方程fˊ(x)=0有几个实根,并指出它们所在的区间.
计算下列极限:
利用带有佩亚诺型余项的麦克劳林公式求下列极限:
计算下列极限:
求极限
设闭区域D(如图):x2+y2≤y,x≥0,f(x,y)为D上的连续函数,且求f(x,y).
随机试题
教育目的对整个教育工作起()作用。
A.超急性期心肌梗死B.急性期心肌梗死C.近期心肌梗死D.陈旧性心肌梗死ST段斜形抬高、T波高大、无异常Q波提示
关于横向磁化矢量的描述,错误的是
患者,女,25岁。痛经2年,经行不畅,小腹胀痛拒按,经色紫红,夹有瘀块,血块下后痛可缓解,舌有瘀斑,脉沉涩。治疗应以哪组经脉腧穴为主
一级建筑位移观测的基准点不应少于()个。
凡申请出境居住( )的中国籍人员,必须持有卫生检疫机关签发的健康证明。
我国目前消费税的税目有()。
物业管理绩效评价的基本要素有()
缺货成本是指企业适时适地的持有所需零部件或物料时所发生的成本。()
测试程序使用的数据应
最新回复
(
0
)