计算∫arctanexdx.

admin2021-10-18  29

问题 计算∫arctanexdx.

选项

答案∫arctanex/exdx=∫arctanex/e2xd(ex)=∫arctant/t2dt=-∫arctantd(1/t)=-arctant/t+∫1/[t(1+t2)]dt=-arctant/t+∫(1/t-t/(1+t2))dt=-arctant/t+lnt-1/2lm(1+t2)+C=arctantex/ex+1/2lne2x/(1+ex)+C.

解析
转载请注明原文地址:https://kaotiyun.com/show/fyy4777K
0

相关试题推荐
    随机试题
    最新回复(0)