首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,a1,a2,…,an是n维列向量,其中an≠0,若Aa1=a2,Aa2=a3,…,Aan一1=an,Aan=0. (Ⅰ)证明a1,a2,…,an线性无关; (Ⅱ)求A的特征值、特征向量.
设A是n阶矩阵,a1,a2,…,an是n维列向量,其中an≠0,若Aa1=a2,Aa2=a3,…,Aan一1=an,Aan=0. (Ⅰ)证明a1,a2,…,an线性无关; (Ⅱ)求A的特征值、特征向量.
admin
2015-12-22
65
问题
设A是n阶矩阵,a
1
,a
2
,…,a
n
是n维列向量,其中a
n
≠0,若Aa
1
=a
2
,Aa
2
=a
3
,…,Aa
n一1
=a
n
,Aa
n
=0.
(Ⅰ)证明a
1
,a
2
,…,a
n
线性无关;
(Ⅱ)求A的特征值、特征向量.
选项
答案
(1)利用线性无关的定义证之;(2)利用相关矩阵的性质求之. 解 (1)令 k
1
α
1
+k
2
α
2
+…+k
n
α
n
=0. ① 由题设 Aα
1
=α
2
, Aα
2
=α
3
, …, Aα
n一1
=α
n
, 有 A
n
α
1
=A
n一1
α
2
=…=Aa
n
=0. 将A
n一1
左乘式①,得k
1
α
n
=0.由于α
n
≠0,故k
1
=0. 再依次用A
n一2
,A
n一3
,…乘式①,可得 k
2
=k
3
=…=k
n
=0, 所以α
1
,α
2
,…,α
n
线性无关. (2)由于 A[α
1
,α
2
,…,α
n
]=[α
2
,α
3
,…,α
n
,0] [*] 因为α
1
,α
2
,…,α
n
线性无关,矩阵[α
1
,α
2
,…,α
n
]可逆,从而 [*] 得知A的特征值全为0.又因 秩(A)=秩(B)=n一1, 所以Ax=0的基础解系由n一秩(A)=1个向量组成,由Aα
n
=0·α
n
知,A的线性无关的特征向量为α
n
,全部特征向量为kα
n
,k≠0为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/gwbD777K
0
考研数学二
相关试题推荐
下列茶叶素有茶王之称的是()。
文艺复兴的指导思想是人文主义,其突出的特征是()。
单位要召开座谈会。你作为负责人,在准备拿资料到会议室时不小心将茶水倒在了资料上面,最后几页看不清楚了。这时单位打印纸也用完了,你怎么办?
某单位收发员为收集邮票,故意隐匿、毁弃他人信件,其行为侵犯了宪法规定的公民的哪项权利?()
古车上的篷盖有的用席篷,有的用麻布之类制作,顶上比较陡,到篷边上挑起而成为曲线。这样的好处,一是可以不挡住乘车人的视线,二是可以使顶篷上的雨水排得更远。这段话的主要内容是()。
民族区域自治制度与特别行政区制度是我国宪法制度中具有自身特色的两项制度。下列对这两项制度的表达不正确的是()。
纸上写有若干个整数,它们的平均数为56,小明将其中的每个奇数乘以2,每个偶数乘以3,所得到的全部计算结果的平均值为134.已知纸上所有奇数的和比所有偶数的和大180,那么纸上共写有几个数?
差异系数的使用应注意()
设函数f(x)在[—1,1]上连续,在点x=0处可导,且f’(0)≠0.(Ⅰ)求证:给定的x∈(0,1),至少存在一个θ∈(0,1)使得∫0xf(t)dt+∫0—xf(t)dt=x[f(θx)—f(—θx)];(Ⅱ)求极限.
设y=f(x)二阶可导,f’(x)≠0,它的反函数是x=φ(y),又f(0)=1,f’(0)=,f"(0)=—1,则=________.
随机试题
(2007年10月)根据修定后的《证券法》的规定,在上市公司收购中,收购人持有的被收购的上市公司的股票,在收购行为完成后的一定期限内不得转让,该期限是_______。
在Windows中,快速格式化只删除硬盘上的文件,但不检查磁盘的坏扇区;完全格式化会删除硬盘上的全部文件并在检查磁盘后将坏扇区标注出来。()
门诊,40岁妇女,闭经2年余。考虑为子宫性闭经,必需的辅助检查方法是
下列关于婴幼儿腹泻的叙述,错误的是
招标、拍卖、挂牌活动结束后,出让人应在()个工作日内将招标、拍卖、挂牌出让的结果在土地有形市场或者指定的场所、媒介公布。
国民经济统计中的机构单位是指能够独立拥有资产、承担负债、从事经济活动并与其他单位进行交易的经济实体。( )
信托业务属于商业银行的()。
合同的解除、终止,不影响合同中结算条款、清理条款的效力。()
某工厂现行甲种原料360千克,乙种原料290干克,计划利用这两种原料生产A、B两种产品共50件。已知生产1件A种产品需用甲种原料9千克,乙种原料3千克,可获利润700元;生产1件B种产品需用甲种原料4千克,乙种原料10干克,可获利润1200元,则最大利润是
IliveinthelandofDisney,Hollywoodandyear-roundsun.Youmaythinkpeopleinsuchaglamorous,fun-filledplacearehappi
最新回复
(
0
)