首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,a1,a2,…,an是n维列向量,其中an≠0,若Aa1=a2,Aa2=a3,…,Aan一1=an,Aan=0. (Ⅰ)证明a1,a2,…,an线性无关; (Ⅱ)求A的特征值、特征向量.
设A是n阶矩阵,a1,a2,…,an是n维列向量,其中an≠0,若Aa1=a2,Aa2=a3,…,Aan一1=an,Aan=0. (Ⅰ)证明a1,a2,…,an线性无关; (Ⅱ)求A的特征值、特征向量.
admin
2015-12-22
52
问题
设A是n阶矩阵,a
1
,a
2
,…,a
n
是n维列向量,其中a
n
≠0,若Aa
1
=a
2
,Aa
2
=a
3
,…,Aa
n一1
=a
n
,Aa
n
=0.
(Ⅰ)证明a
1
,a
2
,…,a
n
线性无关;
(Ⅱ)求A的特征值、特征向量.
选项
答案
(1)利用线性无关的定义证之;(2)利用相关矩阵的性质求之. 解 (1)令 k
1
α
1
+k
2
α
2
+…+k
n
α
n
=0. ① 由题设 Aα
1
=α
2
, Aα
2
=α
3
, …, Aα
n一1
=α
n
, 有 A
n
α
1
=A
n一1
α
2
=…=Aa
n
=0. 将A
n一1
左乘式①,得k
1
α
n
=0.由于α
n
≠0,故k
1
=0. 再依次用A
n一2
,A
n一3
,…乘式①,可得 k
2
=k
3
=…=k
n
=0, 所以α
1
,α
2
,…,α
n
线性无关. (2)由于 A[α
1
,α
2
,…,α
n
]=[α
2
,α
3
,…,α
n
,0] [*] 因为α
1
,α
2
,…,α
n
线性无关,矩阵[α
1
,α
2
,…,α
n
]可逆,从而 [*] 得知A的特征值全为0.又因 秩(A)=秩(B)=n一1, 所以Ax=0的基础解系由n一秩(A)=1个向量组成,由Aα
n
=0·α
n
知,A的线性无关的特征向量为α
n
,全部特征向量为kα
n
,k≠0为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/gwbD777K
0
考研数学二
相关试题推荐
下列太平天国的诸活动中,能与当时世界历史潮流同步的是()。
经济全球化是指跨国商品与服务贸易及资本流动规模和形式的增加,以及技术的广泛迅速传播使世界各国经济的相互依赖性增强。
中国古代把一天划分为十二个时辰,每个时辰相当于现在的两小时。古代“丑时”指的是()。
单位要召开座谈会。你作为负责人,在准备拿资料到会议室时不小心将茶水倒在了资料上面,最后几页看不清楚了。这时单位打印纸也用完了,你怎么办?
A、 B、 C、 D、 D通过观察可以发现,第一套图形中都拥有共同元素两条直线,第二套图形中前两个图形的共同元素是一个大圆和两个小圆,依此规律,只有D项符合这一规律。
2011年华东六省一市,人均公共绿地面积超过全国平均值的有几个省市?()
按照世界银行的界定,基尼系数反映的是收入或消费支出在不同个人或家庭的分布。世界上大多数国家统计的是收入的分布,并且将收入界定为税后的可支配收入,但也有一些国家统计的是消费支出的分布,比如印度。由于边际消费倾向递减的因素,用消费支出计算的基尼系数会明显低于用
设n阶矩阵A=(α1,α2,…,αn),B=(β1,β2,…,βn),AB=(γ1,γ2,…,γn),令向量组(Ⅰ):α1,α2,…,αn;(Ⅱ)β1,β2,…,βn;(Ⅲ):γ1,γ2,…,γn,若向量组(Ⅲ)线性相关,则().
设A为三阶实数对称矩阵,且存在正交矩阵,使得QTAQ=,又令B=A2+2E,求矩阵B.
随机试题
集体合同的时间效力的表现形式有()
下列关于NHL的病理类型中,哪些属于中度恶性?
(2007年第75题)下列属于退行性变的疾病是
下列行为中,属于无效民事行为的有()。
人们常说“教学有法,教无定法”,此话反映了教师劳动的()。(2014·河南)
Wherearetheynow?
Electronicmailhasbecomeanextremelyimportantandpopularmeansofcommunication.Theconvenienceandefficiencyofelec
JudgingbythewildlycheeringaudienceattheorgyofconsumerismthatwasOprahWinfrey’s"UltimateFavouriteThings"show,A
A、Theykeepallthepropertyoftheorganization.B、Theyareresponsibleformostofthebusinessdebts.C、Theytakemorerespon
Postgraduatedilemmas[A]Decidingwhetherornottobecomeapostgraduatecanbeadaunting(令人畏缩的)prospect.Evenifyouaresure
最新回复
(
0
)