首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
外语
How Exercise Could Lead to a Better Brain [A]The value of mental-training games may be speculative, as Dan Hurley writes in his
How Exercise Could Lead to a Better Brain [A]The value of mental-training games may be speculative, as Dan Hurley writes in his
admin
2015-11-16
42
问题
How Exercise Could Lead to a Better Brain
[A]The value of mental-training games may be speculative, as Dan Hurley writes in his article on the quest to make ourselves smarter, but there is another, easy-to-achieve, scientifically proven way to make yourself smarter. Go for a walk or a swim. For more than a decade, neuroscientists and physiologists have been gathering evidence of the beneficial relationship between exercise and brainpower. But the newest findings make it clear that this isn’t just a relationship; it is the relationship. Using sophisticated technologies to examine the workings of individual neurons(神经元)—and the makeup of brain matter itself—scientists in just the past few months have discovered that exercise appears to build a brain that resists physical shrinkage and enhance cognitive flexibility. Exercise, the latest neuroscience suggests, does more to improve thinking than thinking does.
[B]The most persuasive evidence comes from several new studies of lab animals living in busy, exciting cages. It has long been known that so-called "enriched" environments—homes filled with toys and engaging, novel tasks— lead to improvements in the brainpower of lab animals. In most instances, such environmental enrichment also includes a running wheel, because mice and rats generally enjoy running. Until recently, there was little research done to tease out the particular effects of running versus those of playing with new toys or engaging the mind in other ways that don’t increase the heart rate.
[C]So, last year a team of researchers led by Justin S. Rhodes, a psychology professor at the Beckman Institute for Advanced Science and Technology at the University of Illinois, gathered four groups of mice and set them into four distinct living arrangements. One group lived in a world of sensual and taste plenty, dining on nuts, fruits and cheeses, their food occasionally dusted with cinnamon(肉桂), all of it washed down with variously flavored waters. Their "beds" were small colorful plastic dome-shaped houses occupying one corner of the cage. Neon-hued(霓虹色的)balls, plastic tunnels, chewable blocks, mirrors and seesaws(跷跷板)filled other parts of the cage. Group 2 had access to all of these pleasures, plus they had small disc-shaped running wheels in their cages. A third group’s cages held no decorations, and they received standard, dull food. And the fourth group’s homes contained the running wheels but no other toys or treats.
[D]All the animals completed a series of cognitive tests at the start of the study and were injected with a substance that allows scientists to track changes in their brain structures. Then they ran, played or, if their environment was unenriched, stayed lazily in their cages for several months. Afterward, Rhodes’s team put the mioe through the same cognitive tests and examined brain tissues. It turned out that the toys and tastes, no matter how stimulating, had not improved the animals’ brains.
[E]" Only one thing had mattered," Rhodes says, " and that’s whether they had a running wheel. " Animals that exercised, whether or not they had any other enrichments in their cages, had healthier brains and performed significantly better on cognitive tests than the other mice. Animals that didn’t run, no matter how enriched their world was otherwise, did not improve their brainpower in the complex, lasting ways that Rhodes’s team was studying. " They loved the toys," Rhodes says, and the mice rarely ventured into the empty, quieter portions of their cages. But unless they also exercised, they did not become smarter.
[F]Why would exercise build brainpower in ways that thinking might not? The brain, like all muscles and organs, is a tissue, and its function declines with underuse and age. Beginning in our late 20s, most of us will lose about 1 percent annually of the volume of the hippocampus(海马体), a key portion of the brain related to memory and certain types of learning.
[G]Exercise though seems to slow or reverse the brain’s physical decay, much as it does with muscles. Although scientists thought until recently that humans were born with a certain number of brain cells and would never generate more, they now know better. In the 1990s, using a technique that marks newborn cells, researchers determined during examining the dead bodies that adult human brains contained quite a few new neurons. Fresh cells were especially prevalent in the hippocampus, indicating that neurogenesis(神经形成)—or the creation of new brain cells—was primarily occurring there. Even more encouraging, scientists found that exercise jump-starts neurogenesis. Mice and rats that ran for a few weeks generally had about twice as many new neurons in their hippocampi as motionless animals. Their brains, like other muscles, were bulking up.
[H]But it was the indescribable effect that exercise had on the functioning of the newly formed neurons that was most startling. Brain cells can improve intellect only if they join the existing neural network, and many do not, instead existing aimlessly in the brain for a while before dying. One way to pull neurons into the network, however, is to learn something. In a 2007 study, new brain cells in mice became looped into the animals’ neural networks if the mice learned to navigate(导航)a water maze(迷宫), a task that is cognitively but not physically taxing. But these brain cells were very limited in what they could do. When the researchers studied brain activity afterward, they found that the newly wired cells fired only when the animals navigated the maze again, not when they practiced other cognitive tasks. The learning encoded in those cells did not transfer to other types of rodent(啮齿动物)thinking.
[I]Exercise, on the other hand, seems to make neurons move quickly and easily. When researchers in a separate study had mice run, the animals’ brains readily wired many new neurons into the neural network. But those neurons didn’t fire later only during running. They also lighted up when the animals practiced cognitive skills, like exploring unfamiliar environments. In the mice, running, unlike learning, had created brain cells that could multitask.
[J]Just how exercise remakes minds on a molecular level is not yet fully understood , but research suggests that exercise prompts increases in something called brain-derived neurotropic factor(脑源性神经营养因子), or B. D. N. F. , a substance that strengthens cells and axons(轴突), strengthens the connections among neurons and sparks neurogenesis. Scientists can’t directly study similar effects in human brains, but they have found that after physical exercise, most people display higher B. D. N. F. levels in their bloodstreams.
[K]Few if any researchers think that more B. D. N. F. explains all of the brain changes associated with exercise. The full process almost certainly involves multiple complex biochemical and genetic cascades(级联反应). A recent study of the brains of elderly mice, for instance, found 117 genes that were expressed differently in the brains of animals that began a program of running, compared with those that remained motionless, and the scientists were looking at only a small portion of the many genes that might be expressed differently in the brain by exercise.
[L]Whether any type of exercise will produce these desirable effects is another unanswered and intriguing issue. " It’s not clear if the activity has to be endurance exercise," says the psychologist and neuroscientist Arthur F. Kramer, director of the Beckman Institute at the University of Illinois and a celebrated expert on exercise and the brain. A limited number of studies in the past several years have found cognitive benefits among older people who lifted weights for a year and did not otherwise exercise. But most studies to date, and all animal experiments, have involved running or other aerobic(有氧的)activities.
[M]Whatever the activity, though, an emerging message from the most recent science is that exercise needn’t be exhausting to be effective for the brain. When a group of 120 older men and women were assigned to walking or stretching programs for a major 2011 study, the walkers wound up with larger hippocampi after a year. Meanwhile, the stretchers lost volume to normal shrinkage. The walkers also displayed higher levels of B. D. N. F. in their bloodstreams than the stretching group and performed better on cognitive tests.
[N]In effect, the researchers concluded, the walkers had regained two years or more of hippocampal youth. Sixty-five-year-olds had achieved the brains of 63-year-olds simply by walking, which is encouraging news for anyone worried that what we’re all facing as we move into our later years is a life of slow mental decline.
Scientists have found higher levels of B. D. N. F. in the bloodstreams after people doing exercises.
选项
答案
J
解析
转载请注明原文地址:https://kaotiyun.com/show/j4Q7777K
0
大学英语六级
相关试题推荐
TheAlzheimer’sAssociationandtheNationalAllianceforCaregivingestimatethatmenmakeupnearly40percentoffamilycare
Recently,anearlydecadeoldpaperontheeconomiceffectsofhumancloningbyaFrencheconomicsprofessorhasbeengettingso
A、Aplanaboutenvironmentalprotection.B、Aplanaboutthefacilitiesthatcanmovepeoplearound.C、Aprojectabouttheadvant
A、Itisriskytogivehimemergencytreatment.B、Hecarriesaminorelectricalcharge.C、Heshouldbesenttonearbyhospitalim
A、Heshouldbecarefulwhenusinghiscreditcards.B、Heoughttosellhiscartosavemoney.C、Heshouldstopspendingmoneyon
A、Shecan’taffordacomputerrightnow.B、Shecan’tfinishherassignment,either.C、Themanshouldbuyacomputerrightaway.
Womensawlittleadvancementincorporateboardroomsandcompensationin2010,extendinga5-yeartrendinwhichcompanieshave
A、Whyhumanscry.B、Howtorelieveourselves.C、Howanimalscry.D、Whenpeoplecry.A主旨题。议论文需注意首句话,此文章第一句“Whydowecry?”就点明了主题:
MoreDisastersthanBefore?1.最近人们对自然灾害的报道越来越关注2.因而有不少人认为灾难比以前更多了3.我的看法
VideogameshavebecomeincreasinglypopularinbotharcadesandtheaverageAmericanhome.Peopleofallagesandfromallwalk
随机试题
局部用冷1小时可出现()
某咨询机构受一汽车销售公司的委托,对某地区家用轿车消费市场进行分析预测,该咨询机构从委托单位得到了该地区每万人家用轿车销售量数据,并通过其他途径采集了人均收入有关信息,见表4-1。为了预测2021年该地区家用轿车的销售量,咨询单位拟采用德尔菲法
某日用化妆品厂本月销售600套自产旅行化妆品套装.每套由下列产品组成:自产门红一支(不含税价48元),外购防晒霜一瓶(15元),自产香水一瓶(20元),塑料包装袋(2元)。每套产品单价为85元,以上均为不含税价,其本月销售套装产品应当缴纳的消费税为(
下列名山中,()是唯一受过古代皇帝封禅的名山。
“骏马能历险,犁田不如牛;坚车能载重,渡河不如舟”。这句话启发我们在用人方面要坚持()。
蓄积器官是毒物在体内的蓄积部位。毒物在蓄积器官内的浓度高于其他器官,但对蓄积器官不一定显示毒作用。这种毒作用也可以通过某种病理生理机制,由另一个器官表现出来,这种器官叫作效应器官。根据上述定义,下列判断正确的是()。
小张工作的时间是12点到19点,某天小张在上班时间先后参加了两个时长为半小时的讨论会,两个讨论会开始时小张手表上的时针和分针都呈90度角。则两个会议的开始时间最多间隔()。
下列关于综合布线系统的描述中,错误的是()
Thereisadifferencebetweenscienceandtechnology.Scienceisamethodofanswering(51)questions,technologyisamethodofs
Youwillhearpartofaconversationbetweentwocompanyemployees,awomancalledRoseandamancalledSteve.Foreachquestio
最新回复
(
0
)