首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t) (1)问当t为何值时,向量组α1,α2,α3线性无关? (2)问当t为何值时,向量组α1,α2,α3线性相关? (3)当向量组α1,α2,α3线性相关时,将α3表示为α1和α2
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t) (1)问当t为何值时,向量组α1,α2,α3线性无关? (2)问当t为何值时,向量组α1,α2,α3线性相关? (3)当向量组α1,α2,α3线性相关时,将α3表示为α1和α2
admin
2015-09-12
71
问题
设α
1
=(1,1,1),α
2
=(1,2,3),α
3
=(1,3,t)
(1)问当t为何值时,向量组α
1
,α
2
,α
3
线性无关?
(2)问当t为何值时,向量组α
1
,α
2
,α
3
线性相关?
(3)当向量组α
1
,α
2
,α
3
线性相关时,将α
3
表示为α
1
和α
2
的线性组合.
选项
答案
解1 由于行列式 [*]所以,当t≠5时,D≠0,此时向量组α
1
,α
2
,α
3
线性无关; 当t=5时,D=0,此时向量组α
1
,α
2
,α
3
线性相关. 当t=5时,对矩阵[α
T
1
,α
T
2
∣α
T
3
]作初等行变换: [*]由此即知α
3
=一α
1
+2α
2
. 解2 对矩阵A=[α
T
1
,α
T
2
,α
T
3
]作初等行变换: [*]由此可知,当t≠5时,r(A)=3,此时向量组α
1
,α
2
,α
3
线性无关;当t=5时,r(A)=2,此时向量组α
1
,α
2
,α
3
线性相关,此时,有 [*]于是得α
3
=一α
1
+2α
2
.
解析
本题主要考查向量组的线性相关性与向量组所构成矩阵的秩的关系,以及如何求解线性表示的问题.注意,向量β由向量组α
1
,…,α
n
线性表示的问题,等价于一个非齐次线性方程组的问题,这个方程组的增广矩阵为
转载请注明原文地址:https://kaotiyun.com/show/mqU4777K
0
考研数学三
相关试题推荐
党的十九大报告提出的新时代党的建设原则、方针、主线、总体布局、目标,既指明方向路径又指出思路要求,既有具体抓手又有检验标准,它们相互联系、密不可分,共同构成了总要求、总遵循。其中,新时代党的建设的主线是
金融垄断资本得以形成和壮大的重要制度条件是
今天,中华民族要继续前进,就必须根据时代条件,继承和弘扬我们的民族精神、我们民族的优秀文化,特别是包含其中的传统美德。下列关于中华传统美德的正确认识是
在同一社会制度内,时代的变化,主要衡量标准是发展水平质的提升,或者发生影响全局的重大变革。中国特色社会主义进人了新时代的重大判断,不是历史学的时代分期,也不是纯学术的概念,而是对我们党和国家事业发展到一个新阶段的标定,是对我国过去发展成就的充分肯定,也是对
1949年3月,中国共产党在河北省平山县西柏坡村召开了中共七届二中全会。毛泽东在会上提出了“两个务必”的思想,即
设矩阵Am×n的秩为r(A)=m<n,Em为m阶单位矩阵,下列结论中正确的是().
设向量α=α1+α2+…+αs(s>1),而β1=α-α1,β2=α-α2,…,βs=α-αs,则().
二次型f(x1,x2,x3)=2x12+x22-4x32-4x1x2-2x2x3的标准形是().
设n阶实对称矩阵A满足条件A2+6A+8E=O,且A+tE是正定矩阵,则t的取值范围为_______.
已知二次型f(x1,x2,x3)=x12+5x22+x32+2x1x2+2ax2x3为正定二次型,则a的取值范围________.
随机试题
对造影的散射强度、回声强度无影响的是
有关脊柱正位影像解剖的叙述,错误的是
A.阴凉处贮存B.凉暗处贮存C.冷处贮存D.避光贮存E.室温贮存2~10℃是
(2007)圆明园西洋楼景区是由谁委托来华的哪位传教士设计建造的?
公路工程施工中,遇有六级(含六级)以上大风、浓雾、雷雨等恶劣天气时,不得进行()作业。[2010年真题]
银行营销组织的主要职能不包括()。
甲公司2015年度涉及现金流量的交易或事项如下:(1)以银行存款购入一台生产经营用设备,取得的增值税专用发票注明的设备价款为500万元,可抵扣增值税进项税额为85万元;(2)附追索权转让应收账款收到现金200万元;(3)因处置子公司收到现金500万元
1,52,313,174,()
价格是市场机制的核心,是最灵敏的调节手段。()
Ifyouwanttostayyoung,sitdownandhaveagoodthink.ThisistheresearchfindingofateamofJapanesedoctors,whosayt
最新回复
(
0
)