首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向节,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解. β可由α1,α2,α3线性表示,但表示式不唯一,并求出表示式
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向节,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解. β可由α1,α2,α3线性表示,但表示式不唯一,并求出表示式
admin
2013-02-27
110
问题
已知4阶方阵A=(α
1
,α
2
,α
3
,α
4
),α
1
,α
2
,α
3
,α
4
均为4维列向节,其中α
2
,α
3
,α
4
线性无关,α
1
=2α
2
-α
3
.如果β=α
1
+α
2
+α
3
+α
4
,求线性方程组Ax=β的通解.
β可由α
1
,α
2
,α
3
线性表示,但表示式不唯一,并求出表示式.
选项
答案
当a=b≠0时,对(A:β)施以初等行变换,有 [*] 可知r(A)=r(A:B)=2,故方程组有无穷多解,其全部解为 k
1
=1-1/a,k
2
=1/a+c,k
3
=c,其中c为任意常数. β可由α
1
,α
2
,α
3
线性表示,但表示式不唯一,其表示式为 β=(1-1/a)α
1
+(1/a+c)α
2
+cα
3
解析
转载请注明原文地址:https://kaotiyun.com/show/ncF4777K
0
考研数学三
相关试题推荐
恩格斯说过:“经济上落后的国家在哲学上仍然能够演奏第一小提琴。”这说明()
新民主主义时期三种不同性质的经济成分及与之相联系的三种基本的阶级力量之间的矛盾,集中表现为()
民法是调整平等主体的自然人、法人和非法人组织之间的人身关系和财产关系的法律规范。民事主体在民事活动中的法律地位一律平等。民事主体从事民事活动,应当遵循()
结合材料回答问题:材料1新冠肺炎疫情再次证明,只有构建人类命运共同体才是人间正道。在这场攸关全人类健康福祉、世界发展繁荣的斗争中,团结合作是最有力的武器。世界各国应该以团结取代分歧、以理性消除偏见,凝聚起抗击疫情的强大合力,加强合作,共克时艰,
1978年5月11日,《光明日报》发表了《实践是检验真理的唯一标准》一文,重申了实践是检验真理的唯一标准这个马克思主义认识论的基本原理,从根本理论上否定了“两个凡是”的错误方针,引起了全国范围内的广泛注意和讨论。关于真理标准问题的讨论是继延安整风运动之后又
大革命失败后,要不要坚持革命?如何坚持革命?这是摆在中国共产党面前的两个带根本性的问题。党从残酷的现实中认识到,没有革命的武装之尤无法战胜武装的反革命,就无法夺取中国革命胜利,就无法改变中国人民和中华民族的命运,必须以武装的革命反对武装的反革命.南昌起义打
《香港特别行政区基本法》(简称《基本法》)于1990年4月4日由第七届全国人民代表大会第三次会议通过,并自1997年7月1日起施行。依据我国法律部分划分标准和原则,《基本法》属于
爱因斯坦提出的广义相对论颠覆了传统的空间和时间概念。他的方程式预言了黑洞的存在:大质量的天体会使空间弯曲、时间减慢,一个超大质量的天体甚至能吞噬光线,从而形成一片“绝对黑暗”的空间,这就是黑洞。2020年诺贝尔物理学奖授予三名科学家,英国科学家罗杰•彭罗斯
二次型f(x1,x2,x3)=2x12+x22-4x32-4x1x2-2x2x3的标准形是().
将函数分别展开成正弦级数和余弦级数.
随机试题
______shegotthefirstplaceinthefinalexammadeherveryhappy.
肺性脑病患者进入昏迷状态,一侧瞳孔缩小,对光反射迟钝,除积极处理呼吸衰竭外,急救先采用
单位合并时,对财产物资应进行()。
不属于生产经营主要设备的物品,单位价值在()元以下,可以按实际使用数额列为费用。
在公司治理的经验当中,审计委员会的设立、独立性和职能发挥占据着越来越重要的作用,那么下列关于审计委员会的说法中,不正确的是()。
国际航空运输中最主要的单据是()。
下列哪部作品是王光祈先生的代表作?()
同级人民法院之间在各自辖区内受理第一审民事案件的分工和权限是()管辖。
CigarsInstead?Smokingoneortwocigarsadaydoublestheriskofcancersofthelip,tongue,mouth,andthroat,according
DoesLisaagreewithwhatFranksaidaboutherunderstandingofthehappiestpeople?
最新回复
(
0
)