首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数F(x,y)在(x0,y0)的某邻域有连续的二阶偏导数,且 F(x0,y0)=F′x(x0,y0)=0, F′y(x0,y0)>0,F″xx(x0,y0)<0. 由方程F(x,y)=0在x0的某邻域确定的隐函数y=y(x),它有连续
设函数F(x,y)在(x0,y0)的某邻域有连续的二阶偏导数,且 F(x0,y0)=F′x(x0,y0)=0, F′y(x0,y0)>0,F″xx(x0,y0)<0. 由方程F(x,y)=0在x0的某邻域确定的隐函数y=y(x),它有连续
admin
2015-12-22
28
问题
设函数F(x,y)在(x
0
,y
0
)的某邻域有连续的二阶偏导数,且
F(x
0
,y
0
)=F′
x
(x
0
,y
0
)=0, F′
y
(x
0
,y
0
)>0,F″
xx
(x
0
,y
0
)<0.
由方程F(x,y)=0在x
0
的某邻域确定的隐函数y=y(x),它有连续的二阶导数,且y(x
0
)=y
0
,则( ).
选项
A、y(x)以x=x
0
为极大值点
B、y(x)以x=x
0
为极小值点
C、y(x)在x=x
0
不取极值
D、(x
0
,y(x
0
))是曲线y=y(x)的拐点
答案
B
解析
利用隐函数的求导法则及已知条件,如能证明y′(x
0
)=0,y″(x
0
)>0,则x
0
为y(x)的极小值点.
解 按隐函数求导法知,y′(x)满足
令x=x
0
,相应地y=y
0
,因
F′
x
(x
0
,y
0
)=0,
F′
y
(x
0
,y
0
)>0,
故y′(x
0
)=0.将上式再对x求导,并注意y=y(x),即得
再令x=x
0
,相应地y=y
0
.由y′(x
0
)=0,F′
y
(x
0
,y
0
)>0,得到
因
得y″(x
0
)>0.因此,x=x
0
是y=y(x)的极小值点.
转载请注明原文地址:https://kaotiyun.com/show/pwbD777K
0
考研数学二
相关试题推荐
在SWOT分析矩阵中T和W代表()。
无论完全竞争还是不完全竞争,当企业利润最大化时,总能满足的条件是()。
行政确认:是指行政机关依法对行政管理的相对人的法律地位、权力义务或有关法律事实进行审核、鉴别、给予确认、认定、证明并予以宣告的具体行政行为。下列属于行政确认的是()。
快递公司服务范围即服务网络能覆盖或到达的范围,是衡量快递公司竞争力的最重要因素,也是快递企业提供快递服务的物质基础,服务范围决定了快递公司快件所能到达的服务区域,对于客户来说,快递公司能提供的服务范围当然是越大越好。以下哪项如果为真,不能支持上述判断?(
青藏高原有“世界屋脊”之称,它的形成是由哪两个板块碰撞引起的?()
研究人员在大肠杆菌外面缠裹了一种叫作B氨基酯的人工合成聚合物,形成一种“细菌胶囊”。随后,将其插入抵抗肺炎球菌的蛋白质疫苗。实验证明,这种胶囊能被动或主动地瞄准一种特殊免疫细胞,它能提升人体免疫反应,具有很强的抗肺炎球菌疾病的能力。研究人员指出,这种胶囊疫
2006×2005一2004×2003的值是:
某学校准备重新粉刷升国旗的旗台,该旗台由两个正方体上下叠加而成,边长分别为1米和12米。问需要粉刷的面积为:
一元线性回归方程的显著性有哪几种检验方法?()
材料:马克思指出,立法者应该把自己看作一个自然科学家。他不是在制造法律,不是在发明法律,而仅仅是在表述法律。他把精神关系的内在规律表现在有意识的现行法律之中。问题:(1)指出马克思的论断的法理学含义。(2)说明马克思得出这一结论的根据
随机试题
小叶性肺炎的并发症有
影响微囊囊径大小的因素有
A.急性阴道炎B.宫颈腺体囊肿C.宫颈息肉D.宫颈管炎E.宫颈结核
A.薄荷B.荆芥C.益母草D.广藿香E.细辛气香特异,味微苦的药材是
招标采购项目信息记录中的采购文件包括()。
【背景资料】某城市给水工程的施工总承包商与某管道施工工程公司签订了管道焊接施工分包合同。在施工中,总承包商项目经理部严格执行《质量管理体系基础和术语》(GB/T19000--2008)标准对质量控制的规定。在该工程施工总承包合同签订
下列旋律片段出自哪部作品?()
[2015年第41--42题]基于以下题干:某大学运动会即将召开,经管学院拟组建一支12人的代表队参赛,参赛队员将从该院4个年级的学生中选拔。学校规定:每个年级都须在长跑、短跑、跳高、跳远、铅球等5个项目中选择1~2项参加比赛,其余项目可任意选择
设f(χ)可导,则下列正确的是().
Thereisarangeofactivitieswhichrequiremovementsofaboutonetofourorfivemiles.Thesemightbeleisureactivities,su
最新回复
(
0
)