首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数F(x,y)在(x0,y0)的某邻域有连续的二阶偏导数,且 F(x0,y0)=F′x(x0,y0)=0, F′y(x0,y0)>0,F″xx(x0,y0)<0. 由方程F(x,y)=0在x0的某邻域确定的隐函数y=y(x),它有连续
设函数F(x,y)在(x0,y0)的某邻域有连续的二阶偏导数,且 F(x0,y0)=F′x(x0,y0)=0, F′y(x0,y0)>0,F″xx(x0,y0)<0. 由方程F(x,y)=0在x0的某邻域确定的隐函数y=y(x),它有连续
admin
2015-12-22
18
问题
设函数F(x,y)在(x
0
,y
0
)的某邻域有连续的二阶偏导数,且
F(x
0
,y
0
)=F′
x
(x
0
,y
0
)=0, F′
y
(x
0
,y
0
)>0,F″
xx
(x
0
,y
0
)<0.
由方程F(x,y)=0在x
0
的某邻域确定的隐函数y=y(x),它有连续的二阶导数,且y(x
0
)=y
0
,则( ).
选项
A、y(x)以x=x
0
为极大值点
B、y(x)以x=x
0
为极小值点
C、y(x)在x=x
0
不取极值
D、(x
0
,y(x
0
))是曲线y=y(x)的拐点
答案
B
解析
利用隐函数的求导法则及已知条件,如能证明y′(x
0
)=0,y″(x
0
)>0,则x
0
为y(x)的极小值点.
解 按隐函数求导法知,y′(x)满足
令x=x
0
,相应地y=y
0
,因
F′
x
(x
0
,y
0
)=0,
F′
y
(x
0
,y
0
)>0,
故y′(x
0
)=0.将上式再对x求导,并注意y=y(x),即得
再令x=x
0
,相应地y=y
0
.由y′(x
0
)=0,F′
y
(x
0
,y
0
)>0,得到
因
得y″(x
0
)>0.因此,x=x
0
是y=y(x)的极小值点.
转载请注明原文地址:https://kaotiyun.com/show/pwbD777K
0
考研数学二
相关试题推荐
以天下为己任是中国士大夫的优良传统,“风声雨声读书声声声入耳,家事国事天下事事事关心”出自()。
下列各项所描写的人物中,与其他三项不处于同一时代的是()。
下列茶叶素有茶王之称的是()。
单位要召开座谈会。你作为负责人,在准备拿资料到会议室时不小心将茶水倒在了资料上面,最后几页看不清楚了。这时单位打印纸也用完了,你怎么办?
快递公司服务范围即服务网络能覆盖或到达的范围,是衡量快递公司竞争力的最重要因素,也是快递企业提供快递服务的物质基础,服务范围决定了快递公司快件所能到达的服务区域,对于客户来说,快递公司能提供的服务范围当然是越大越好。以下哪项如果为真,不能支持上述判断?(
研究证明,吸烟所产生的烟雾中的主要成分丙烯醛,是眼睛健康的慢性杀手,而橄榄油提取物羟基酪醇,能有效减缓这个“慢性杀手”给眼睛带来的伤害,由此得出结论,常吃橄榄油能够让吸烟者眼睛远离伤害。以下如果为真,最能支持上述论证的是()。
民族区域自治制度与特别行政区制度是我国宪法制度中具有自身特色的两项制度。下列对这两项制度的表达不正确的是()。
计算两次考试成绩(X、Y)的相关系数。
一元线性回归方程的显著性有哪几种检验方法?()
已知微分方程=(y-χ)z,作变换u=χ2+y2,μ=,ω=lnz(χ+y),其中ω=ω(u,μ),求经过变换后原方程化成的关于ω,u,μ的微分方程的形式.
随机试题
如果摄入的蛋白质过少,会使生长发育迟缓,机体抵抗力降低。()
有人根据某种沙门菌食物中毒患者164例的潜伏期资料,用百分位数法求得潜伏期的单侧95%上限为57.8小时,其含义是
关于新生儿用药下列错误的是()。
患者,女性,32岁。妇科检查发现子宫后倾。若该女性孕34周时发生胎膜早破,为防止脐带脱垂,应采用
某城市规划中心为了重新规划本市的居民区,制订了一整套规划方案。由于居住区的规划是一项综合性较强的工作,故需要考虑的因素很多,如使用要求、卫生标准、安全程度等,该城市规划中心对住宅建筑及居住区道路绿地等公共设施的规划布置进行全面系统地统计,为居民创造一个生活
反洗钱法的主要内容包括()。
A注册会计师是XYZ上市公司2005年度会计报表审计的外勤审计负责人,在审计过程中,需对负责关联方审计的助理人员提出的相关问题予以解答。请代为做出正确的专业判断。
枪:子弹
命令??的作用是()。
Theamazingsuccessofhumansasa【C1】______istheresultoftheevolutionarydevelopmentofourbrainswhichhasled,amongoth
最新回复
(
0
)