首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
外语
Merle’s spare change jar has exactly 16 U. S. coins, each of which is a 1-cent coin, a 5-cent coin, a 10 cent coin, a 25-cent co
Merle’s spare change jar has exactly 16 U. S. coins, each of which is a 1-cent coin, a 5-cent coin, a 10 cent coin, a 25-cent co
admin
2022-10-18
53
问题
Merle’s spare change jar has exactly 16 U. S. coins, each of which is a 1-cent coin, a 5-cent coin, a 10 cent coin, a 25-cent coin, or a 50-cent coin. If the total value of the coins in the jar is 288 U. S. cents, how many 1-cent coins are in the jar?
(1) The exact numbers of 10-cent, 25-cent, and 50-cent coins among the 16 coins in the jar are, respectively, 6, 5, and 2.
(2) Among the 16 coins in the jar there are twice as many 10-cent coins as 1-cent coins.
选项
A、Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.
B、Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.
C、BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.
D、EACH statement ALONE is sufficient.
E、Statements (1) and (2) TOGETHER are NOT sufficient.
答案
D
解析
Let a, b, c, d, and e be the number, respectively, of 1-cent, 5-cent, 10-cent, 25-cent, and 50-cent coins. We are given the two equations shown below. Determine the value of a.
a + b + c + d+e=16
a + 5b + 10c + 25d+50e = 258
(1) We are given that c = 6, d = 5, and e = 2. Substituting these values into the two equations displayed above and combining terms gives a + b = 3 and a + 5b = 3. Subtracting these last two equations gives 4b = 0, and therefore b = 0 and a = 3; SUFFICIENT.
(2) We are given that c = 2a. Substituting c = 2a into the two equations displayed above and combining terms gives the following two equations.
3a + b + d+e= 16
21a+ 5b + 25d+50e = 288
From the first equation above we have 3a = 16 - b - d- e. Therefore, 3a < 16, and it follows that the value of a must be among 0,1,2, 3,4, and 5. From the second equation above we have 5(b + 5d+ 10e) = 288 - 21a, and thus the value of 288 - 21a must be divisible by 5.
The table above shows that a = 3 is the only nonnegative integer less than or equal to 5 such that 288 - 21a is divisible by 5; SUFFICIENT.
The correct answer is D;
each statement alone is sufficient.
转载请注明原文地址:https://kaotiyun.com/show/q3tO777K
本试题收录于:
GMAT QUANTITATIVE题库GMAT分类
0
GMAT QUANTITATIVE
GMAT
相关试题推荐
Theygotoworkeveryday______SaturdayandSunday.Thosedaysareholidays.
She______thewashingoutinthegardenbecauseitwasfineyesterday.
Inancienttimesthemostimportantexaminationswerespoken,notwritten.IntheschoolsofancientGreeceandRome,testingus
WashingtonIrvingwasAmerica’sfirstmanofletterstobeknowninternationally.Hisworkswerereceivedenthusiasticallyboth
Havingbeenpraisedbytheteacher,thelittlegirlranbackhome,________.
WashingtonIrvingwasAmerica’sfirstmanofletterstobeknowninternationally.Hisworkswerereceivedenthusiasticallyboth
Thetwogirlslookexactly______inappearance.
Forthepastseveralyears,theSundaynewspapersupplementParadehasfeaturedacolumncalled"AskMarilyn."Peopleareinvite
SomeStanislausCountyfarmersarehavingatoughtimeharvestingtheircropsbecauseofashortageofworkers.ForyearsVi
Inasampleofassociatesatalawfirm,30percentaresecond-yearassociates,and60percentarenotfirst-yearassociates.Wh
随机试题
欣赏你的同事,你和同事之间会合作得更加融洽:欣赏你的下属,下属会更加努力地工作;欣赏你的爱人,爱情会更加甘甜;欣赏你的学生,学生会更加可爱。________。横线处应填入的句子是()。
女孩,16岁,近10个月来右上腹痛频繁伴黄疸,且逐渐加重,大便呈陶土色,消炎利胆治疗无好转。患儿生后6天曾行先天性胆总管囊肿十二指肠吻合术。确诊的方法以下哪种较好
北京市无业人员韩某,长期贩卖黄色光盘,2010年年底在一次打击盗版光盘活动中,被公安机关抓获,北京市劳动教养管理委员会根据《国务院关于劳动教养问题的决定》及有关规定,作出对韩某收容劳动教养1年的决定。复议机关与一审人民法院均维持原劳动教养1年的决定,韩某提
奥苏贝尔的问题解决模式的步骤有【】
日期2010-1-20在Excel系统内部存储的是()。
能够提高电力系统静态稳定性的措施有()。
河姆渡和半坡居民过着定居生活,最主要的原因是:
甲状舌管(thyroglossalduct)
"Ah,yes,divorce",RobinWilliamsoncemused,"fromtheLatinwordmeaningtoripoutaman’sgenitalsthroughhiswallet".The
如下图所示,网络站点A发送数据包给B,在数据包经过路由器转发的过程中,封装在数据包3中的目的IP地址和目的MAC地址是()。
最新回复
(
0
)