首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(b)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点. 写出f(x)在x=c处带Lagrange型余项的一阶泰勒公式;
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(b)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点. 写出f(x)在x=c处带Lagrange型余项的一阶泰勒公式;
admin
2016-10-24
37
问题
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(b)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.
写出f(x)在x=c处带Lagrange型余项的一阶泰勒公式;
选项
答案
f(x)=f(c)+f’(c)(x一c)+[*](x一c)
2
,其中ξ介于c与x之间.
解析
转载请注明原文地址:https://kaotiyun.com/show/qIH4777K
0
考研数学三
相关试题推荐
设m,n∈Z+,证明:当x→0时,(1)o(xm)+o(xn)=o(xl),l=min{m,n};(2)o(xm)×o(xn)=o(xm+n);(3)若α是x→0时的无穷小,则αxm=o(xm);(4)o(kxn)=o(xn(k≠0).
设a=3i+5j-2k,b=2i+j+9k,试求λ的值,使得(1)λa+b与z轴垂直;(2)λa+b与a垂直,并证明此时|λa+b|取最小值.
求二元函数z=f(x,y)=x2y(4-x-y)在直线x+y=6,x轴和y轴所围成的闭区域D上的最大值和最小值.
计算曲面积分,∑为抛物面z=2-(x2+y2)在xOy面上方的部分,f(x,y,z)分别如下:(1)f(x,y,z)=1,(2)f(x,y,z)=x2+y2.
设3阶矩阵A的特征值为2,3,λ.若行列式|2A|=-48,则λ=________.
设α1=(2,-1,0,5),α2=(-4,-2,3,0),α3=(-1,0,1,k),α4=(-1,0,2,1),则k=________时,α1,α2,α3,α4线性相关.
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)-λ[f(ξ)-ξ]=1.
某企业为生产甲、乙两种型号的产品投入的同定成本为10000(万元).设该企业生产甲、乙两种产品的产量分别为x(件)和y(件),且这两种产品的边际成本分别为20+x/2(万元/件)与6+y(万元/件).当总产量为50件时,甲、乙两种产品的产量各为多少时可
设0<a<1,证明:方程arctanx=ax在(0,+∞)内有且仅有一个实根.
随机试题
关于慢性肺源性心脏病心电图表现的描述,最正确的是:()
显影的作用是
A.焦虑B.关系妄想C.释疑性妄想D.被害妄想E.嫉妒妄想
在国外项目投资估算中,有初步的工艺流程图、主要生产设备的生产能力及项目建设的地理位置等条件,可套用相近规模厂的单位生产能力建设费用来估算拟建项目所需的投资额。以上投资估算方法适用于()阶段。
待执行合同变成亏损合同的,该亏损合同产生的义务满足预计负债确认条件的应确认为预计负债。()
按照我国《企业会计准则》的规定,编制合并现金流量表时,抵销处理包括的内容有()。
马克思主义认为,人的全面发展最根本的是指()。
邓小平同志提出的“建设有中国特色的社会主义”这一概念体现了
A、BecausemanyarchitectsstudiedwithWright.B、BecauseWrightstartedthepracticeof"land-scraping".C、BecauseWrightusede
HowPovertyChangestheBrainA)Yousawthepicturesinscienceclass—aprofileviewofthehumanbrain,sectionedbyfuncti
最新回复
(
0
)