首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
外语
GPS The Global Positioning System is a space-based triangulation system using satellites and computers to measure positions
GPS The Global Positioning System is a space-based triangulation system using satellites and computers to measure positions
admin
2012-12-26
68
问题
GPS
The Global Positioning System is a space-based triangulation system using satellites and computers to measure positions anywhere on earth. It is first and foremost a defense system developed by the United States Department of Defense, and is referred to as the "Navigation Satellite Timing and Ranging Global Positioning System" or NAVSTAR GPS. The uniqueness of this navigational system is that it avoids the limitations of other land-based systems such as limited geographic coverage, lack of continuous 24-hour coverage, and the limited accuracies of other related navigational instruments. The high accuracies obtainable with the Global Positioning System also make it a precision survey instrument.
GPS Components: the Space Segment, the Control Segment, and the User Segment.
Space Segment
The Space Segment of the system consists of the GPS satellites. These space vehicles (SVs) send radio signals from space.
The GPS Operational Constellation consists of 24 satellites that orbit the earth in 12 hours. There are often more than 24 operational satellites as new ones are launched to replace older satellites. The satellite orbits repeat almost the same ground track (as the earth turns beneath them) once each day. The orbit altitude is such that the satellites repeat the same track and area over any point approximately each 24 hours (4 minutes earlier each day). There are six orbital planes (with four SVs in each), equally spaced (60 degrees apart), and inclined at about fifty-five degrees with respect to the equatorial (赤道的) plane. This constellation provides the user with between five and eight SVs visible from any point on the earth.
Control Segment
The Control Segment consists of a system of tracking stations located around the world.
The Master Control facility is located at Schriever Air Force Base (formerly Falcon AFB) in Colorado. These monitor stations measure signals from the SVs which are incorporated into orbital models for each satellites. The models compute precise orbital data and SV clock corrections for each satellite. The Master Control station uploads orbital data and clock data to the SVs. The SVs then send subsets of the orbital ephemeris (星历表) data to GPS receivers over radio signals.
User Segment
The GPS User Segment consists of the GPS receivers and the user community. GPS receivers change SV signals into position, speed, and time estimates. Four satellites are required to compute the four dimensions of X, Y, Z (position) and Time. GPS receivers are used for navigation, positioning, time distribution, and other research.
Navigation in three dimensions is the primary function of GPS. Navigation receivers are made for aircraft, ships, ground vehicles, and for hand carrying by individuals.
Precise positioning is possible using GPS receivers at reference locations providing corrections and relative positioning data for remote receivers. Surveying, geodetic control, and plate tectonic studies are examples.
Time and frequency distribution, based on the precise clocks on board the SVs and controlled by the monitor stations, is another use for GPS. Astronomical observatories, telecommunications facilities, and laboratory standards can be set to precise time signals or controlled to accurate frequencies by special purpose GPS receivers.
Research projects have used GPS signals to measure atmospheric parameters.
GPS Accuracy
At present the system consists of 24 satellites at an altitude of about 20,000 km having an orbital inclination of 55 degrees. The orbits are almost circular and it takes 12 hours for a satellite to complete a pass around the Earth. GPS signals are broadcast from a cluster of 24 or more earth orbiting satellites. Because the GPS signals are derived from the atomic frequency standards on board each satellite, they are widely used as a reference for time synchronization and frequency adjustment. The real time positioning accuracy of a single receiver is normally up to 100 meters horizontally and 150 meters vertically. However, various methods have been developed which enable much higher accuracy (centimeter level).
GPS Receivers
There are a variety of different types of GPS receivers on the market for commercial and public use. Prices range from $500—$30,000, reflecting the accuracy and capabilities of the instruments. For the general outdoorsman, a good GPS receiver should have 8 satellite tracking capability and be capable of receiving the GPS satellite signals through forest covering in northern Ontario shield area; for the professional user, a minimum 8 satellite tracking capability, high memory capacity, differential GPS capability, and resistance to signal weakening under forest covering is essential; for the professional surveyor requiring high level precision and accuracy capability, they should assess the project or application for which the technology is to be used with the help of an unbiased consultant, in order to determine the most cost effective and appropriate instrument.
Navigational Units
Small hand held units at relatively low cost allow boaters and hikers to know their position within a few hundred meters. This accuracy is sufficient for recreational use.
Mapping
A hand held or similar unit at mid-range price that is linked to a fixed broadcast base station. These units allow utility companies, municipalities and others to locate various items (telephone poles, waterlines, valves) with a positional tolerance of several meters. This is suitable for some Geographical Information Systems (GIS) mapping purposes.
GPS and Policing
GPS technology offers numerous benefits to law enforcement agencies of all types. For some agencies, the navigational capabilities offered by GPS enhance efficiency and safety. These navigational applications can be used to support a variety of policing and criminal justice functions. Other agencies use GPS positioning technologies to carry out special operations or to provide enhanced personnel safety.
For example, using computerized maps of their rights given by law, cooperated with GPS, aviation personnel can determine location, speed and time.
The positioning capabilities offered by GPS may also contribute to the success of specialized law enforcement operations such as in controlling vehicles. One such program operated in Minneapolis led to a 60% reduction in auto theft after only one month. The automatic vehicle location systems can not only provide efficiency of response and help ensure officer safety, but also provide officer with accurate information concerning the best response route to an incident. What’s more, they can provide officers information that allows the closest patrol officers to be dispatched to a particular incident.
Advanced Transportation Management Systems (ATMS) are heavily dependant upon GPS technology to provide data about the road system. GPS allows for law enforcement personnel to clear roadway blockages to ensure the safety of motorist.
Most people associate law enforcement with the prevention, reduction, and prosecution of criminal activity. In fact, a large portion of local law enforcement resources are involved in facilitating the movement of people and vehicles in a safe manner.
In conclusion, large-volume commercial applications such as cellular phones, personal communication systems, and in-vehicle navigation systems will fuel continued development of these technologies. What was ultimately the domain of the Department of Defense is rapidly becoming available for business, private, and general government use. Policing and public safety in general, will benefit from these market forces. It is clear that there are a number of GPS applications for policing.
The accuracy of a hand held GPS unit at relatively low price is good enough for ______
选项
答案
recreational use
解析
圈空白处应为名词词组。原文该段第2句的This accuracy指的就是第1句中的相对低成本的小型手提式设备的准确度,题目中的good enough是对sufficient的同义改写,因此本题答案就在for之后。
转载请注明原文地址:https://kaotiyun.com/show/rew7777K
0
大学英语四级
相关试题推荐
ATheSpanishGovernmentissoworriedaboutthenumberofyoungadultsstilllivingwiththeirparentsthatithasdecidedtoh
A、It’snotashardasexpected.B、It’stootoughforsomestudents.C、It’smuchmoredifficultthanpeoplethink.D、It’sbelieve
WhyDIY?ThereasonswhypeopleengageinDIYhavealwaysbeennumerousandcomplex.Forsome,DIYhasprovidedarareoppor
Teachingtodaydemandsmorethanjustcaringaboutchildrenandknowingone’ssubjectwell.Teachersneedtofindoutwhat【B1】__
A、Theyreadpoetryaloud.B、Theydeliveredaspeech.C、Theytookobjectivetests.D、Theydiscussedquestionswithexpertsinap
Howmenfirstlearnedtoinventwordsisunknown;inotherwords,theoriginoflanguageisa【C1】______.Allwereallyknowist
WhenIfirstentereduniversity,myaunt,whoisanEnglishprofessor,gavemeanewEnglishdictionary.Iwas【C1】______toseet
A、Sheistoooldtoseeclearly.B、Shehasbeentiredoftheoldcar.C、Sheisseriouslyill.D、Shehasbeenhurtinanaccident
AmongthecriticismsoftheObamaadministration’sbankrescueproposalisthatthegovernmentwillprovideupto$1trillionin
AmongthecriticismsoftheObamaadministration’sbankrescueproposalisthatthegovernmentwillprovideupto$1trillionin
随机试题
数据管理技术的发展经历了人工管理、文件管理和数据库管理等3个阶段。其中数据独立性最高的是文件管理阶段。
海因里希事故连锁理论把事故发生过程概况为五个因素,对该五个因素的正确描述是()。
下列不属于纯粹风险的是( )。
瑞士心理学家皮亚杰认为,游戏是儿童认识新的复杂客体和事件的方法,是巩固和扩大概念、技能的方法,是使思维和行动结合起来的方法。游戏的本质是同化超过了顺应。因此,皮亚杰的游戏理论也被称为“同化顺应说”。
现代企业不仅是物质生产者,也是文化观念的创造者;企业既生产自身,也创造人格;既创造满足市场需要的商品,也塑造企业文化人。观念创新的文化逻辑客观上要求现代企业要以经济与文化互动的模式,创造新的企业发展模式,这是企业文化境界的呈现。这段文字的主旨是(
艺术创作世界没有“安慰奖”,作品自身的水准远比空谈“磨剑”的口头功夫来得重要。更何况有些标榜的“年数”。还未必真实。所以套用一句当下的流行语:少一些磨剑,多一些真诚。当然,这绝对不是说文艺作品不需要反复打磨;恰恰相反,正是因为文艺作品需要真诚与耐心的打磨,
依据()可以将学习划分为意义学习与机械学习。
简述危害结果在刑法中的意义。
八宝饭
在过去几十年中,高等教育中的女生比例正在逐渐升高。以下事实可以部分地说明这一点:在1959年,20一21岁之间的女性只有11%在接受高等教育,而在1991年,在这个年龄段中的女性的30%在高校读书。了解以下哪项,对评价上述论证至关重要?
最新回复
(
0
)