首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
工程
设β1,β2是线性方程组Ax=b的两个不同的解,α1、α2是导出组Ax=0的基础解系,k1、k2是任意常数,则Ax=b的通解是:
设β1,β2是线性方程组Ax=b的两个不同的解,α1、α2是导出组Ax=0的基础解系,k1、k2是任意常数,则Ax=b的通解是:
admin
2016-07-31
76
问题
设β
1
,β
2
是线性方程组Ax=b的两个不同的解,α
1
、α
2
是导出组Ax=0的基础解系,k
1
、k
2
是任意常数,则Ax=b的通解是:
选项
A、
+k
1
α
1
+k
2
(α
1
-α
2
)
B、α
1
+k
1
(β
1
-β
2
)+k
2
(α
1
-α
2
)
C、
+k
1
α
1
+k
2
(α
1
-α
2
)
D、
+k
1
α
1
+k
2
(β
1
-β
2
)
答案
C
解析
非齐次方程组的通解y=y(齐次方程的通解)+y
*
(非齐次方程的一个特解),可验证
(β
1
+β
2
)是Ax=b的一个特解。
因为β
1
,β
2
是线性方程组Ax=b的两个不同的解
又已知α
1
,α
2
为导出组Ax=0的基础解系,可知α
1
,α
2
是Ax=0解,同样可验证α
1
-α
2
也是Ax=0的解,A(α
1
-α
2
)=Aα
1
-Aα
2
=0-0=0。
还可验证α
1
,α
1
-α
2
线性无关。
设有任意两个实数K
11
,K
22
使K
11
α
1
+K
22
(α
1
-α
2
)=0,即(K
11
+K
22
)α
1
-K
22
α
2
=0,
因α
1
,α
2
线性无关,所以α
1
,α
2
的系数,K
11
+K
22
=0,-K
22
=0。
即
解得K
11
=0,K
22
=0;因此α
1
,α
1
-α
2
线性无关。
故齐次方程组Ax=0的通解为y=K
1
α
1
+K
2
(α
1
-α
2
)。
又y
*
=
(β
1
+β
2
)是Ax=b的一个特解;
所以Ax=b的通解为y=
+K
1
α
1
+K
2
(α
1
-α
2
)。
转载请注明原文地址:https://kaotiyun.com/show/uAlf777K
本试题收录于:
基础考试(上午)题库注册土木工程师(岩土)分类
0
基础考试(上午)
注册土木工程师(岩土)
相关试题推荐
基准收益率与财务净现值的关系是()。
以下特性中不属于股票融资的特点是()。
25℃,在[Cu(NH3)4]SO4水溶液中,滴加BaCl2时有白色沉淀产生,滴加NaOH时无变化,而滴加Na2S时则有黑色沉淀生成,以上实验现象说明该溶液中(Ks为溶度积常数)()。
如图5-19所示,矩形截面,C为形心,阴影面积对zC轴的静矩为(SzC)A,其余部分面积对zC轴的静矩为(SzC)B,(SzC)A与(SzC)B之间的关系为()。
横截面面积为A的圆杆受轴向拉力作用,在其他条件不变时,若将其横截面改为面积仍为A的空心圆截面,则杆的()。
下列关于化学反应速率常数k的说法正确的是()。
已知某一元弱酸的浓度为0.01mol/L,pH=4.55,则其解离常数Ka为()。
设,与A合同的矩阵是()。
下面四个悬臂梁中挠曲线是圆弧的为()。
不定积分∫xf"(x)dx等于()。
随机试题
立克次体与细菌之间的主要区别是()
______byHenryJamestellsastoryaboutayoungandinnocentAmericanconfrontingthecomplexityoftheEuropeanlife.
不属于市场经济对医疗活动双向效应者是
最有助于临床诊断肺脓肿的症状是
地籍最初的主要内容是应纳税的()的登记。
混凝土达到强度要求时开始放张,放张时宜( )。
()是整个证券市场的核心。
根据车船使用税暂行条例的规定,下列车辆和船舶应征收车船使用税的有()。
游客们的消费有助于减轻长期的贸易逆差。出口对此也大有帮助。2006年5月至2007年5月之间,出口额上升了11%,这在一定程度上是由于美元的持续走弱。
A、Apples,pears,grapesandsoon.B、Apples,oranges,grapesandsoon.C、Oranges,bananas,pineappleandsoon.D、Oranges,stra
最新回复
(
0
)