累次积分∫01dx∫x1f(x,y)dt+∫12dy∫02-yf(x,y)dx可写成( )

admin2016-06-27  34

问题 累次积分∫01dx∫x1f(x,y)dt+∫12dy∫02-yf(x,y)dx可写成(    )

选项 A、∫02dx∫x2-xf(x,y)dy.
B、∫01dy∫02-yf(x,y)dx.
C、∫01dx∫x2-xf(x,y)dy.
D、∫01dy∫12-xf(x,y)dx.

答案C

解析 原积分域为直线y=x,x+y=2,与y轴围成的三角形区域,故选C.
转载请注明原文地址:https://kaotiyun.com/show/uTT4777K
0

相关试题推荐
最新回复(0)