首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(a,b)内存在二阶导数,且f"(x)<0.试证: 若x0∈(a,b),则对于(a,b)内的任何x,有f(x0)≥f(x)-f’(x0)(x-x0),当且仅当x=x0时等号成立;
设函数f(x)在(a,b)内存在二阶导数,且f"(x)<0.试证: 若x0∈(a,b),则对于(a,b)内的任何x,有f(x0)≥f(x)-f’(x0)(x-x0),当且仅当x=x0时等号成立;
admin
2015-07-22
45
问题
设函数f(x)在(a,b)内存在二阶导数,且f"(x)<0.试证:
若x
0
∈(a,b),则对于(a,b)内的任何x,有f(x
0
)≥f(x)-f’(x
0
)(x-x
0
),当且仅当x=x
0
时等号成立;
选项
答案
将f(x)在x
0
点泰勒展开,即f(x)=f(x
0
)+f’(x
0
)(x—x
0
)+[*] (x—x
0
)
2
,ξ在x
0
与x之间.由已知f"(x)<0,x∈(a,b)得 [*] (x—x
0
)
2
≤0,当且仅当x=x
0
时等号成立,于是f(x)≤f(x
0
)+f’(x
0
)(x—x
0
),即 f(x
0
)≥f(x)一f’(x
0
)(x-x
0
),当且仅当x=x
0
时等号成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/ycU4777K
0
考研数学三
相关试题推荐
2022年中央一号文件指出,提升农机装备研发应用水平。完善农机性能评价机制,推进补贴机具有进有出、优机优补,重点支持粮食烘干、履带式作业、玉米大豆带状复合种植、油菜籽收获等农机,推广()农机。
据新华社2022年3月29日报道,李克强总理对国务院反拐部际联席会议电视电话会议作出重要批示。批示指出,各级政府要加强组织领导,各有关部门要强化协作配合,(),对漠视群众利益的严重失职失责行为要严肃追责。要坚持综合施策,(
面对波谲云诡的国际形势、复杂敏感的周边环境、艰巨繁重的改革发展稳定任务,既要有防范风险的(),也要有应对和化解风险挑战的高招;既要打好防范和抵御风险的有准备之战,也要打好化险为夷、转危为机的()。
俗话说“人闲百病生”。医学研究证明,适度的紧张有益于健康激素的分泌,这种激素能增强身体的免疫力,抵御外界的不良刺激和疾病的侵袭。这说明()。
历史证明,我国的社会主义改造是十分成功的,因为()。
求下列函数在指定区间上的最大值、最小值:
设F(x+z,y+z)可微分,求由方程F(x+z,y+z)-1/2(x2+y2+z2)=2确定的函数z=z(x.y)的微分出与偏导数
已知级数,则:(1)写出级数的第五项和第九项u5,u9;(2)计算出部分和S3,S10;(3)写出前几项部分和Sn的表达式;(4)用级数收敛的定义验证该级数收敛,并求和.
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)-λ[f(ξ)-ξ]=1.
设f(x)和φ(x)在(-∞,+∞)内有定义,f(x)为连续函数,且f(x)≠0,φ(x)有间断点,则().
随机试题
肺脓肿的病原体常为上呼吸道、口腔的定植菌,包括
案情:个体工商户李甲开了一家照相馆,因生意较好,决定买下自己店面旁边的一个铺面扩大经营。因刚刚进了一批器材,缺少现金,便对自己的朋友王某提出借款30万元。王某同意借款,但要李甲提供担保。李甲遂于2002年3月以自己刚刚购买的价值10万元的器材设定抵押,并和
下列表述正确的是:()
房地产开发项目开工准备工作完成的标志是取得()。
以下关于X理论和Y理论说法错误的是()。
根据企业所得税法律制度的规定,下列企业缴纳的保险费用中准予在税前全额扣除的有()。
中国共产党十八届五中全会强调,实现“十三五”时期的发展目标,破解发展难题,厚植发展优势,必须树立并切实贯彻()、协调、绿色、开放、()的五大发展理念。
Thetwobankshaveannouncedplanstomergenextyear.
Oneofthe【C1】______beautifulsightsinthebirdworldisthemalepeafowl,orpeacock,strutting(炫耀)proudly【C2】______with
A、Findpropertimeforexercise.B、Knowhowbeautycomes.C、Changethecourseconstantly.D、Nevergiveupforanyexcuse.D
最新回复
(
0
)