The standard deviation of n numbers x1, x2, x3, …, xn with mean is equal to , where S is the sum of the squared differences (x1

admin2019-05-11  39

问题 The standard deviation of n numbers x1, x2, x3, …, xn with mean is equal to , where S is the sum of the squared differences (x1-)2 for 1≤i≤n. If the standard deviation of the 4 numbers 5-a, 5, 25, and 25+a is 50, where a>0, what is the value of a?

选项

答案60

解析 通过观察发现5-a,5,25,25+a这四个数是“对称”的,平均值是15,则根据标准差公式:

200+2(a+10)2=10000
(a+10)2=4900
a+10=70或-70(舍去)
a=60
转载请注明原文地址:https://kaotiyun.com/show/yckO777K
本试题收录于: GRE QUANTITATIVE题库GRE分类
0

最新回复(0)