首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n矩阵,且非齐次线性方程组AX=b满足r(A)==r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n一r+1个.
设A是m×n矩阵,且非齐次线性方程组AX=b满足r(A)==r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n一r+1个.
admin
2015-07-10
109
问题
设A是m×n矩阵,且非齐次线性方程组AX=b满足r(A)=
=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n一r+1个.
选项
答案
因为r(A)=r<n,所以齐次线性方程组AX=0的基础解系含有n一r个线性无关的解向量,设为ξ
1
,ξ
2
,…,ξ
n-r
. 设η
0
为方程组AX=b的一个特解, 令β
0
=η
0
,β
1
=ξ
1
+η
0
,β
2
=ξ
2
+η
0
,…,β
n-r
=ξ
n-r
+η
0
,显然β
0
,β
1
,β
2
,…,β
n-r
,为方程组AX=b的一组解. 令k
0
β
0
+k
1
β
1
…+k
n-r
β
n-r
=0,即 (k
0
+k
1
+…+k
n-r
)η
0
+k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0, 上式两边左乘A得(k
0
+k
1
+…+k
n-r
)b=0, 因为b为非零列向量,所以k
0
+k
1
+…+k
n-r
=0,于是 k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0, 注意到ξ
1
,ξ
2
,…,ξ
n-r
线性无关,所以k
1
=k
2
=…=k
n-r
=0, 故β
0
,β
1
,β
2
,…,β
n-r
线性无关,即方程组AX=b存在由n一r+1个线性无关的解向量构成的向量组.设β
1
,β
2
,…,β
n-r+2
为方程组AX=b的一组线性无关解, 令γ
1
=β
2
一β
1
,γ
2
=β
3
—β
1
,…,γ
n-r+1
=β
n-r+2
—β
1
,根据定义,易证γ
1
,γ
2
,…,γ
n-r+1
线性无关,又γ
1
,γ
2
,…,γ
n-r+1
为齐次线性方程组AX=0的一组解,即方程组AX=0含有n一r+1个线性无关的解,矛盾,所以AX=b的任意n—r+2个解向量都是线性相关的,所以AX=b的线性无关的解向量的个数最多为n一r+1个.
解析
转载请注明原文地址:https://kaotiyun.com/show/yjU4777K
0
考研数学三
相关试题推荐
2021年9月17日,国家主席习近平在上海合作组织成员国元首理事会第二十一次会议上发表重要讲话,并提出五点建议。下列不属于这五点建议的是()。
根据《国务院关于加快建立健全绿色低碳循环发展经济体系的指导意见》,下列说法错误的是()。
《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》指出,维护社会稳定和安全,要正确处理新形势下人民内部矛盾,加强社会治安防控,编织全方位、立体化、智能化社会安全网。下列有关表述错误的是()。
以下关于在全面推进依法治国中发挥党的作用的说法,错误的是()。
习近平总书记在2022年春季学期中央党校(国家行政学院)中青年干部培训班开班式上发表重要讲话。下列对其重要讲话内容的说法,错误的是()。
2021年8月26日,()省智慧化工综合管理平台正式上线,这是我国化工行业首个区域型综合管理平台。
只有()才能救中国,只有坚持和发展()才能实现中华民族伟大复兴。这既是历史的结论,也是未来的昭示。
掷两枚均匀的骰子,已知它们出现的点数各不相同,求其中有一个点数为4的概率.
设u(x,y,z),v(x,y,z)是两个定义在闭区域Ω上的具有二阶连续偏导数的函数,依次表示u(x,y,z),v(x,y,z)沿∑的外法线方向的方向导数.证明:其中∑是空间闭区域Ω的整个边界曲面.
将函数y=ln(1-x-2x2)展开成x的幂级数,并指出其收敛区间.
随机试题
切断家兔双侧颈迷走神经后,呼吸运动的改变是
治疗外感风寒的眉棱骨痛,宜选用治疗外感风寒的巅顶头痛,宜选用
以下有关省煤器损坏原因错误的是()。
下列属于会计等式的是()。
儿童发展的未完成性涵盖人的发展的()。
为了提高办理刑事案件的质量和效率,各地区()之间应当互相协作配合。
我国政府职能的主要实施手段是()。
Cultureinfluencesanindividual’shealthbeliefs,behaviours,activitiesandmedicaltreatmentoutcomes.【C1】______thesignifica
【21】【23】
Halloween’soriginsdatetotheancientCelticfestival【M1】______ofSamhain(pronouncedsow-in).TheCelts,whichlived
最新回复
(
0
)