首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1α1+t2α1,其中t1,t2为实常数.试问t1,t2满足什么关系时,β1,β2,…,βm也为AX=0的一个基础解系.
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1α1+t2α1,其中t1,t2为实常数.试问t1,t2满足什么关系时,β1,β2,…,βm也为AX=0的一个基础解系.
admin
2018-08-02
111
问题
设α
1
,α
2
,…,α
s
为线性方程组Ax=0的一个基础解系,β
1
=t
1
α
1
+t
2
α
2
,β
2
=t
1
α
2
+t
2
α
3
,…,β
s
=t
1
α
1
+t
2
α
1
,其中t
1
,t
2
为实常数.试问t
1
,t
2
满足什么关系时,β
1
,β
2
,…,β
m
也为AX=0的一个基础解系.
选项
答案
由Ax=0的解的线性组合都是解知,β
1
,β
2
,…,β
s
都是Ax=0的解向量.由于已知Ax=0的基础解系含s个向量,所以,只要β
1
,β
2
,…,β
s
线性无关.就可作为基础解系,否则不能作为基础解系.由于β
1
,β
2
,…,β
s
由线性无关向量组α
1
,α
2
,…,α
s
线性表示的系数矩阵为s阶方阵 [*] 故β
1
,β
2
,…,β
s
线性无关[*]|P|=t
1
s
+(-1)
1-s
t
2
a
≠0,即当t
1
,t
2
满足t
1
a
+(-1)
1+s
t
2
a
≠0(s为偶数时,t
1
≠±t
2
;s为奇数时,t
1
≠-t
2
)时,β
1
,β
2
,…,β
s
也是Ax=0的一个基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/02j4777K
0
考研数学二
相关试题推荐
设x与y均大于0且x≠y,证明
已知函数f(x)=求f(x)零点的个数.
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明:存在ξ∈(0,3),使得f"(ξ)-2f’(ξ)=0.
设A=,且AX=0的基础解系含有两个线性无关的解向量,求AX=0的通解.
设A,B都是n阶矩阵,其中B是非零矩阵,且AB=O,则().
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:存在η∈(a,b),使得ηf’(η)+f(η)=0.
设A为n阶矩阵,且|A|=0,则A().
用变量代换x=lnt将方程化为y关于t的方程,并求原方程的通解.
设非负函数f(x)当x≥0时连续可微,且f(0)=1.由y=f(x),x轴,y轴及过点(x,0)且垂直于x轴的直线围成的图形的面积与y=f(x)在[0,x]上弧的长度相等,求f(x).
设f(x)为二阶可导的偶函数,f(0)=1,f"(0)=2且f"(x)在x=0的邻域内连续,则=_______
随机试题
设f(χ)=∫-1χt3|t|dt,(Ⅰ)求函数f(χ)的单调性区间与正、负值区间.(Ⅱ)求曲线y=f(χ)与χ轴所围成的封闭图形的面积.
镇肝熄风汤中的君药是
征用价值是政府强制征用房地产时给予的补偿金额。()
A公司通过资产重组被另一较大的B公司兼并后,法定代表人易人。由于经营方针改变,B公司不愿履行A公司法定代表人签订的供货合同的义务,此时合同( )。
合同中工程量清单的单价和价格是由______的,用于变更工程,容易被各方所接受。()
Herperformanceprovedherselfan______tothecompany.
教师职业道德基本原则对整个教师体系中的一切具体规范和范畴都具有约束力,是评价教师道德行为的最高道德准则。这反映的是教师职业道德基本原则的()
在窗体上绘制一个文本框,然后编写如下事件过程:PrivateSubForm_Click()x=InputBox("请输入一个整数")Printx+Text1.TextEndSub程序运行时,在文本框中输入45
Listenagaintopartofthelecture,thenanswerthequestion.Whydoesthestudentsaythis?
Whatcanbedoneaboutmassunemployment?Allthewiseheadsagree:there’renoquickoreasyanswers.There’sworktobedone,
最新回复
(
0
)