首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1α1+t2α1,其中t1,t2为实常数.试问t1,t2满足什么关系时,β1,β2,…,βm也为AX=0的一个基础解系.
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1α1+t2α1,其中t1,t2为实常数.试问t1,t2满足什么关系时,β1,β2,…,βm也为AX=0的一个基础解系.
admin
2018-08-02
114
问题
设α
1
,α
2
,…,α
s
为线性方程组Ax=0的一个基础解系,β
1
=t
1
α
1
+t
2
α
2
,β
2
=t
1
α
2
+t
2
α
3
,…,β
s
=t
1
α
1
+t
2
α
1
,其中t
1
,t
2
为实常数.试问t
1
,t
2
满足什么关系时,β
1
,β
2
,…,β
m
也为AX=0的一个基础解系.
选项
答案
由Ax=0的解的线性组合都是解知,β
1
,β
2
,…,β
s
都是Ax=0的解向量.由于已知Ax=0的基础解系含s个向量,所以,只要β
1
,β
2
,…,β
s
线性无关.就可作为基础解系,否则不能作为基础解系.由于β
1
,β
2
,…,β
s
由线性无关向量组α
1
,α
2
,…,α
s
线性表示的系数矩阵为s阶方阵 [*] 故β
1
,β
2
,…,β
s
线性无关[*]|P|=t
1
s
+(-1)
1-s
t
2
a
≠0,即当t
1
,t
2
满足t
1
a
+(-1)
1+s
t
2
a
≠0(s为偶数时,t
1
≠±t
2
;s为奇数时,t
1
≠-t
2
)时,β
1
,β
2
,…,β
s
也是Ax=0的一个基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/02j4777K
0
考研数学二
相关试题推荐
设x与y均大于0且x≠y,证明
设A>0,D是由曲线段y=Asinx(0≤x≤)及直线y=0,x=所围成的平面区域,V1,V2分别表示D绕x轴与绕y轴旋转所成旋转体的体积,若V1=V2,求A的值.
设矩阵A=b=若集合Ω={1,2},则线性方程组Ax=b有无穷多解的充分必要条件为
证明:对任意的x,y∈R且x≠y,有
证明:若一个向量组中有一个部分向量组线性相关,则该向量组一定线性相关.
设由方程xef(y)=ey确定y为x的函数,其中f(x)二阶可导,且f’≠1,则=_______
设A=有三个线性无关的特征向量,则a=_______.
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r()=r
设α1,…,αm,β为m+1维向量,β=α1+…+αm(m>1).证明:若α1,…,αm线性无关,则β-α1,…,β-αm线性无关.
随机试题
与关系型对手谈判的禁忌不包括()
ThelettersPTO______parent-teacherorganization.
A.氟氯烷烃B.丙二醇C.PVPD.枸橼酸钠E.PVA气雾剂中的潜溶剂
男,56岁。颈肩痛1个月,并向右手放射,右手拇指痛觉减弱,肱二头肌肌力弱。初步诊断是
【背景资料】某公司承建的市政道路工程,长2km,与现况道路正交,合同工期为2015年6月1日至8月31日。道路路面底基层设计为300mm水泥稳定土;道路下方设计有一条DN1200mm钢筋混凝土雨水管道,该管道在道路交叉口处与现状道路下的现有DN300mm
单位内部会计监督的主体是各单位的单位负责人。()
《INCOTERMS2010》中,买方自费办理货物出口结关手续的术语是()。
第三次技术革命开始于20世纪40年代的美国,其主要标志是()。
ThemodernEnglishbeganinthe______century.
A、Eatinginacafeteria.B、Buyingsomethinginastore.C、Talkingonthetelephone.D、Gettingmoneyatabank.C综合理解题。男士先问,你打通了
最新回复
(
0
)