首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值f(A)=g(a),f(bb)=g(b),证明存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ)。
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值f(A)=g(a),f(bb)=g(b),证明存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ)。
admin
2016-12-30
56
问题
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值f(A)=g(a),f(bb)=g(b),证明存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ)。
选项
答案
构造辅助函数F(x)=f(x)一g(x),由题设有F(A)=F(B)=0.又f(x),g(x)在(a,b)内具有相等的最大值,不妨设存在x
1
≤x
2
,x
1
,x
2
∈(a,b)使得 [*]。若x
1
=x
2
,令c=x
1
,则F(c)=0。若x
1
<x
2
,因F(x
1
)=f(x
1
)一g(x
1
)≥0,F(x
1
)=f(x
2
)一g(x
2
)≤0,由介值定理知,存在c∈[x
1
,x
2
]c(a,b),使F(c)=0。在区间[a,c],[c,b]上分别利用罗尔定理知,存在ξ
1
∈(a,c),ξ
2
∈(c,b),使得F’(ξ
1
)=F’(ξ
2
)=0。再对F’(x)在区间[ξ,ξ]上应用罗尔定理,知存在ξ∈(ξ
1
,ξ
2
)c(a,b),有F’’(ξ)=0,即f’’(ξ)=g’’(ξ)。
解析
转载请注明原文地址:https://kaotiyun.com/show/0Jt4777K
0
考研数学二
相关试题推荐
设f(x)在x=2处连续,且,则曲线y=f(x)在点(2,f(2))处的切线方程为________.
已知函数z=f(x,y)的全微分dz=2xdx-2ydy,并且f(1,1)=2,求f(x,y)在椭圆域上的最大值和最小值。
设函数f(x)、g(x)满足条件:f’(x)=g(x),g’(x)=f(x).又f(0)=0,g(x)≠0,试求由曲线与x=0,x=t(t>0),y=1所围成的平面图形的面积。
设y=f(x)是区间[0,1]上的任一非负连续函数。又设f(x)在区间(0,1)内可导,且f’(x)>,证明第一小问中x0是唯一的。
设函数f(x)闭区间[a,b]上连续,在开区间(a,b)内可导,且f’(x)>0,若极限存在,证明:在(a,b)内,f(x)>0.
在曲线y=x2(x≥0)上某点A处作一切线,使之与曲线以及x轴所围成图形的面积为,试求:切点A的坐标。
设函数u(x,y)=ψ(x+y)+ψ(x-y)+∫x-yx+yψ(t)dt,其中函数ψ具有二阶导数,ψ具有一阶导数,则必有________。
计算极限.
设有三元方程xy-zlny+exy=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程
设α1,α2……αm(m≥2)为正数,则=_________。
随机试题
“依恋”是指婴儿与母亲(或代理母亲)之间所形成的由爱连接起来的永久性心理联系,最先提出这一概念的心理学家是()
给予有问题行为的学生移情性的理解,分析其问题行为产生的原因及后果,并给其一定的情感宣泄和抚慰。这种应对课堂问题行为的策略属于()。
患者,女,18岁。上前牙松动3年,检查见上切牙松动度。扇形移位,口腔卫生较好,初步印象为局限性青少年牙周炎。若已确诊,其可能还具有的特征如下,但不包括
呕吐病人服药的方法应是()
关于报告期内主要产品的原材料和能源及其供应情况,发行人应披露()。
发行新股时的律师费用属于()
根据《商业银行贷款损失准备管理办法》的规定,商业银行贷款损失准备连续6个月低于监管标准的,银行业监管机构应当()。
具体化技术是指咨询师帮助求助者()。
拿破仑说过,中国是一头沉睡的狮子,当这头睡狮醒来时,世界都会为之发抖。习近平主席强调,中国这头狮子已经醒了,但这是一只和平的、可亲的、文明的狮子:实现中国梦给世界带来的是机遇不是威胁,是和平不是动荡,是进步不是倒退。这在哲学上给我们的启示是
KimiyukiSudashouldbeaperfectcustomerforJapan’scar-makers.He’sayoung,successfulexecutiveatanInternet-servicesco
最新回复
(
0
)