首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A是m×n矩阵,线性方程组AX=b有唯一解的充分必要条件是( ).
A是m×n矩阵,线性方程组AX=b有唯一解的充分必要条件是( ).
admin
2016-01-25
59
问题
A是m×n矩阵,线性方程组AX=b有唯一解的充分必要条件是( ).
选项
A、m=n且|A|≠0
B、导出组AX=0有且仅有零解
C、A的列向量组α
1
,α
2
,…,α
n
与α
1
,α
2
,…,α
n
,b等价
D、r(A)=n,且b可由A的列向量组线性表出
答案
D
解析
利用AX=b有唯一解的充分必要条件是r(A)=r(
)=n去判别.
当m=n时,必有
r(A)=r(
),
因而必有解.又|A|≠0,即m=n=r(A),则AX=b必有唯一解.这也可由克拉默法则得知,但并不必要.当m≠n时,方程组也可能有唯一解.例如
AX=b有唯一解.
(C)是AX=b有唯一解的必要条件,并非充分条件,即两个向量组α
1
,α
2
,…,α
n
与α
1
,α
2
,…,α
n
,b等价是方程组AX=b有解的充要条件,是有唯一解的必要条件.例如
AX=b有解,但解不唯一.
(B)是AX=b有唯一解的必要条件,并非充分条件.因这时不能保证r(A)=r(
).如AX=0有非零解,则AX=b必没有唯一解,它可能有无穷多解,亦可能无解.当AX=0只有零解时,AX=b可能有唯一解,也可能无解,并不能保证必有唯一解.例如
AX=0仅有零解,而AX=b并无解.
(D)秩r(A)=n表明A的列向量组线性无关,因而如AX=b有解,则解必唯一.仅r(A)=n还不能保证r(A)=r(
),因而不能保证AX=b有解(参见(B)中反例),b可由A的列向量组线性表出是AX=b有解的充要条件,这两个条件结合才能保证
r(A)=r(
)=n.
因而它们才是AX=b有唯一解的充要条件.仅(D)入选.
注意 (B)、(C)均是必要条件,前者不能保证r(A)=r(
),因而不能保证AX=b必有解,后者不能保证AX=b的解唯一.A的列向量线性相关,AX=b绝对没有唯一解,列向量组线性无关最多有唯一解.
转载请注明原文地址:https://kaotiyun.com/show/0KU4777K
0
考研数学三
相关试题推荐
有很多民谚、俗语都体现了因果关系,例如“无风不起浪”“种因得果,因果循环”等。下列关于原因和结果的说法,正确的是
“人们自己创造自己的历史”。这一命题表明()。
材料1 北京大学援鄂医疗队全体“90后”党员: 来信收悉。在新冠肺炎疫情防控斗争中,你们青年人同在一线英勇奋战的广大疫情防控人员一道,不畏艰险、冲锋在前、舍生忘死,彰显了青春的蓬勃力量,交出了合格答卷。广大青年用行动证明,新时代的中国青年是好样的,
设矩阵Am×n的秩为r(A)=m<n,Em为m阶单位矩阵,下列结论中正确的是().
有k个坛子,每一个装有n个球,分别编号为1至n,今从每个坛子中任取一球,求m是所取的球中的最大编号的概率.
设α1=(2,-1,3,0),α2=(1,2,0,-2),α3=(0,-5,3,4),α4=(-1,3,t,0),则________时,α1,α2,α3,α4线性相关.
一男子到闹市区去,他遇到背后袭击并被抢劫,他断言凶手是个白人,然而当调查这一案件的法院在可比较的光照条件下多次重复展现现场情况时,受害者正确识别袭击者种族的次数约占80%,袭击者确实是白人的概率是0.8吗?试给出说明.
下列各函数均为x→0时为无穷小,若取x为基本无穷小,求每个函数的阶:
已知函数y=f(x)为一指数函数与一幂函数之积,满足:(2)y=f(x)在(-∞,+∞)内的图形只有一条水平切线与一个拐点,试写出f(x)的一个可能的表达式.
求方程karctanx-x=0不同实根的个数,其中k为参数.
随机试题
压力变送器是根据力平衡原理来测量的。
寒、热、痰、湿、瘀、郁,犯及冲任导致冲任阻滞,治宜疏通冲任,代表方有
对重度休克病人纠正代谢性酸中毒时,下列哪项不宜使用:
钢筋混凝土水处理构筑物的浇筑层高度一般为振捣器作用部分长度的1.25倍,最大不超过()mm。
“备案号”栏应填:“原产国”栏应填:
费率是指利率以外的银行提供信贷服务的价格,一般以信贷产品金额为基数,按一定比率计算。()(2010年上半年)
法是一种社会规范,同道德规范、职业规范相比,具有以下特点()。
班主任对一个班集体的发展起()。
下列VisualBasic变量名中,正确的是()。
描述计算机内存容量的参数,正确的是()。
最新回复
(
0
)