首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设事件A、B、C两两独立,且ABC=φ,P(A)=P(B)=P(C)=p,问p可能取的最大值是多少?
设事件A、B、C两两独立,且ABC=φ,P(A)=P(B)=P(C)=p,问p可能取的最大值是多少?
admin
2016-04-11
65
问题
设事件A、B、C两两独立,且ABC=φ,P(A)=P(B)=P(C)=p,问p可能取的最大值是多少?
选项
答案
P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC)=3p-3p
2
,又P(A∪B∪C)≥P(A∪B)=P(A)+(B)-P(AB)=2p-p
2
,∴2p-p
2
≤3p-p
2
,解得[*](p=0显然无意思);取Ω={w
1
,w
2
,w
3
,w
4
},p(w
i
)=[*],i=1,…,4,A={w
1
,w
2
},B={w
1
,w
3
},C={w
2
,w
3
},则P(A)=P(B)=P(C)=[*],而此A、B、C两两独立且ABC=φ,可见p可能取的最大值应为[*](后半部分在说明:这个[*]可以“取到”,而非仅是一个“界”)
解析
转载请注明原文地址:https://kaotiyun.com/show/0Nw4777K
0
考研数学一
相关试题推荐
设f(x)在R上是以T为周期的连续奇函数,则下列函数中不是周期函数的是()。
设f(x)连续可导,.
设f(x)在x=0的邻域内二阶连续可导,=2,求曲线y=f(x)在点(0,f(0))处的曲率。
设f(x)在[0,a](a>0)上有二阶连续导数,且f(x)≥0,f(0)=0,f"(x)>0,D={(x,y)|0≤x≤a,0≤y≤f(x)},证明:
设A是n阶矩阵,证明:(Ⅰ)r(A)=1的充分必要条件是存在n阶非零列向量α,β,使得A=αβT;(Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
设A是4×5矩阵,ξ1=[1,一1,1,0.0]T,ξ2=[一1,3,一1,2,0]T,ξ3=[2,1,2,3,0]T,ξ4=[1,0,一1,1,一2]T,ξ5=[-2,4,3,2,5]T都是齐次线性方程组Ax=0的解,且Ax=0的任一解向量均可由ξ1,ξ
设n维列向量矩阵A=E一4ααT,其中E是n阶单位矩阵,若n维列向量β=(1,1,…,1)T,则向量Aβ的长度为
设f(x)=,求f(x)的连续区间及间断点.
设函数f(x)在区间[0,1]上连续,并设∫01f(x)dx=a,求∫01dx∫x1f(x)f(y)dy.
已知F(t)=f(x2+y2+z2)dv,其中f可微,Ω:x2+y2+z2≤t2,求F’(t).
随机试题
______isagreatpleasuretohisparents.
一只5月龄猫,食欲废绝,呕吐,体温40.5℃,24小时后降至正常,经2天后在上升,同时临床症状加剧。血常规检查白细胞总数减少,最可能的诊断是
不属于苯二氮革类药物作用特点的是
建设工程周期长、规模大、造价高,不可能一次确定准确的价格,要在建设程序的各个阶段分别进行多次计价,以保证工程造价确定和控制的科学性。这反映了工程造价的()的特点。
城乡规划要实现其指导城市建设和发展的作用,必须依据(),依靠它的影响力、约束力和强制力。
我国股份公司分派股利的形式,一般有()。
根据下表所提供的信息回答下列问题。2011年与2006年相比招生人数增长的是()。
艾里克森认为建立同一性主要是()的发展任务
在程序设计中可使用各种语言编制源程序,但惟有什么在执行转换过程中不产生目标程序?
Surprisingly,nooneknowshowmanychildrenreceiveeducationinEnglishhospitals,stilllessthecontentorqualityofthate
最新回复
(
0
)