首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维向量α1,α2,…,αs线性无关,而α1,α2,…,αs,β线性相关,证明β可以由α1,α2,…,αs线性表出.且表示方法唯一.
设n维向量α1,α2,…,αs线性无关,而α1,α2,…,αs,β线性相关,证明β可以由α1,α2,…,αs线性表出.且表示方法唯一.
admin
2018-06-12
44
问题
设n维向量α
1
,α
2
,…,α
s
线性无关,而α
1
,α
2
,…,α
s
,β线性相关,证明β可以由α
1
,α
2
,…,α
s
线性表出.且表示方法唯一.
选项
答案
因为α
1
,α
2
,…,α
s
,β线性相关,故存在不全为0的k
1
,k
2
,…,k
s
,k使得 k
1
α
1
+k
2
α
2
+…+k
s
α
s
+kβ=0, 那么必有k≠0(否则k
1
,k
2
,…,k
s
不全为0,而k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0,这与α
1
,α
2
,…,α
s
线性无关相矛盾).从而β=-[*](k
1
α
1
+k
2
α
2
+…+k
s
α
s
),即β可以由α
1
,α
2
,…,α
s
线性表出. 如果β有两种表示方法,设为 β=χ
1
α
1
+χ
2
α
2
+…+χ
s
α
s
及β=y
1
α
1
+y
2
α
2
+…+y
s
α
s
, 那么(χ
1
-y
1
)α
1
+(χ
2
-y
2
)α
2
+…+(χ
s
-y
s
)α
s
=0. 因为χ
1
-y
1
,χ
2
-y
2
,…,χ
s
-y
s
不全为0,从而α
1
,α
2
,…,α
s
线性相关,与已知矛盾.故β的表示法唯一.
解析
转载请注明原文地址:https://kaotiyun.com/show/0Ug4777K
0
考研数学一
相关试题推荐
设α1=(1,2,3,1)T,α2=(3,4,7,-1)T,α3=(2,6,a,6)T,α4=(0,1,3,a)T,那么a=8是α1,α2,α3,α4线性相关的()
设n阶矩阵A及s阶矩阵B都可逆,求
设f(χ,y)在全平面有连续偏导数,曲线积分∫Lf(χ,y)dχ+χcosydy在全平面与路径无关,且f(χ,y)dχ+χcosydy=t2,求f(χ,y).
设f(χ)在[0,1]连续且非负但不恒等于零,记I1=∫01f(χ)dχ,I2=(sinχ)dχ,I3=f(tanχ)dχ,则它们的大小关系为
假设你是参加某卫视“相亲节目”的男嘉宾,现有n位女嘉宾在你面前自左到右排在一条直线上,每两位相邻的女嘉宾的距离为a(米).假设每位女嘉宾举手时你必须和她去握手,每位女嘉宾举手的概率均为,且相互独立,若Z表示你和一位女嘉宾握手后到另一位举手的女嘉宾处所走的路
设f(x)=,求曲线y=f(x)与直线y=所围成平面图形绕Ox轴所旋转成旋转体的体积.
设f(x)=试确定常数a,b,c,使f(x)在x=0点处连续且可导.
设有曲面S:2x2+4y2+z2=4与平面π:2x+2y+z+5=0,试求曲面S与平面π的最短距离.
回答下列问题设f(x1,x2,x3)=,用可逆线性变换将f化为规范形,并求出所作的可逆线性变换.并说明二次型的对应矩阵A是正定矩阵;
随机试题
A、Farmingactivities.B、Revolution.C、Themeaningoflife.D、Morality.A短文说从诗人的视角,我们可以感受到农场的日常生活,还有一些背景场景,比如犁地、摘苹果或者补墙,故选A。D项是强干
收益法中的收益额指的是()
下列何药善治肝肾亏损胎动不安
A、乌贼科B、牡蛎科C、芫菁科D、蜜蜂科E、螳螂科海螵蛸来源于
患者,男,60岁,行前列腺肥大摘除术。术后进行膀胱冲洗时,应选择的溶液是
设备的设计开发是一个复杂的过程,也是设备由研发向生产转移的过程,同时要满足( )的要求。
下列关于基差的理解,正确的有( )。
甲队单独完成A工程需要12天,乙队单独完成B工程需要15天。雨天时甲工作效率为平时的60%,乙队工作效率为平时的80%。现两队同时开工,并同时完成各自工程,则雨天有()天。
制空权
Whateffectdoesexcessivepositiveionizationhaveonsomepeople?Accordingtothepassage,staticelectricitycanbecaused
最新回复
(
0
)