首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
计算
计算
admin
2020-03-16
126
问题
计算
选项
答案
方法一 把D
n
按第一行展开,得 [*] 把递推公式①改写成 D
n
一αD
n-1
=β(D
n-1
一αD
n-2
), ② 继续用递推关系②递推,得 D
n
一αD
n-1
=β(D
n-1
-aD
n-2
)=β
2
(D
n-2
-αD
n-3
)=…=β
n-2
(D
2
-αD
1
), 而 D
2
=(α+β)
2
一αβ,D
1
=α+β, D
n
一αD
n-1
=β
n-2
(D
2
-αD
1
)=β
n
, ③ ③式递推得 D
n
=αD
n-1
+β
n
=α(αD
n-2
+β
n-1
)+β
n
=…=α
n
+α
n-1
β+α
n-2
β
2
+…+αβ
n-1
+β
n
. 除了将①式变形得②式外,还可将①式改写成 D
n
一βD
n-1
=α(D
n-1
一β
n-2
), ④ 由④式递推可得 D
n
一βD
n-1
=α
n
, ⑤ ③×β一⑤×α得 (β一α)D
n
=β
n+1
-α
n+1
, 当β一α≠0时,有[*] 方法二 把原行列式表示成如下形式 [*] 再利用“拆项”性质,将D
n
表示成2
n
个n阶行列式之和,可以看出D
n
中第i列的第2子列和第i+1列的第1子列成正比,因此2
n
个行列式中只有n+1个不为零,即各列都选第1子列,或者由第i列起(i=n,n一1,…,1)以后都选第2子列,而前i一1列都选第1子列,最后得 D
n
=α
n
+α
n-1
β+α
n-2
β
2
+…+αβ
n-1
+β
n
.
解析
转载请注明原文地址:https://kaotiyun.com/show/0dA4777K
0
考研数学二
相关试题推荐
已知方程组有无穷多解,那么a=_________。
[2008年](I)证明积分中值定理:若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得f(x)dx=f(η)(b一a).(Ⅱ)若函数φ(x)具有二阶导数,且满足φ(2)>φ(1),φ(2)>∫23φ(x)dx,则至少存在一点
[2017年]设数列{xn}收敛,则().
[2006年]证明:当0<a<b<π时,bsinb+2cosb+πb>asina+2cosa+πa.
设f(x)在[0,1]上连续且递减,证明:当0<λ<1时,∫01f(x)dx≥λ∫01f(x)dx.
(99年)设f(x)是区间[0,+∞)上单调减少且非负的连续函数,an==∫1nf(x)dx(n=1,2,…),证明数列{an}的极限存在.
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵P=其中A*是A的伴随矩阵,E为n阶单位矩阵。证明矩阵Q可逆的充分必要条件是αTA-1α≠b。
讨论方程组的解的情况,在方程组有解时求出其解,其中a,b为常数.
已知二次型f(x1,x2,x3)=(1一a)x12+(1一a)x22+2x32+2(1+a)x1x2的秩为2。求方程f(x1,x2,x3)=0的解。
设三阶实对称矩阵A的各行元素之和都为3,向量α1=[一1,2,一1]T,α2=[0,一1,1]T都是齐次线性方程组AX=0的解.求A及[A一(3/2)E]6.
随机试题
下列哪种疾病不属于不孕症的原因()
子宫异常出血,须证实或排除子宫内膜癌、宫颈管癌者辨明直肠子宫陷凹积液或贴近该部肿块的性质及原因
桥面铺装的作用是()。
2009年真题改编)露天水池,水深5m处的相对压强约为()kPa。
某炼油厂尾气中含有大量的挥发性有机化合物、烃类、有机硫化物,为了防止危及人身安全,需要对炼油厂尾气进行净化,常用的净化方法是()。
保单所有者变更保单形式通常只能变更为费率更高的保险计划,保单所有者必须支付新保单与原保单之间的差额,________可保证明。在实践中,也允许变更为低保费计划,________可保证明。( )
提前支取的定期存款,支取部分()。
A、 B、 C、 D、 A,那么下一项就应该为,选A。
根据公司领导的安排,总经理办公室的刘依依负责制作一个演示文稿,用于在“创新产品展示及说明会”会议休息期间,在大屏幕投影上向各位客户自动播放会议的日程和主题。请你帮她完成这项工作,具体要求如下:删除演示文档中每张幻灯片的备注文字信息。
Ihopeyou______allthematerialsIneedfortileclassbeforeIcomeandteachheretomorrow.
最新回复
(
0
)