首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2005年] 如图1.3.5.2所示,c1和c2分别是y=(1+ex)/2和y=ex的图形,过点(0,1)的曲线c3是一单调增函数的图形,过c2上任一点M(x,y)分别作垂直于x轴和y轴的直线lx和ly.记c1,c2与lx所围图形的面积为S1(x);c
[2005年] 如图1.3.5.2所示,c1和c2分别是y=(1+ex)/2和y=ex的图形,过点(0,1)的曲线c3是一单调增函数的图形,过c2上任一点M(x,y)分别作垂直于x轴和y轴的直线lx和ly.记c1,c2与lx所围图形的面积为S1(x);c
admin
2019-04-05
53
问题
[2005年] 如图1.3.5.2所示,c
1
和c
2
分别是y=(1+e
x
)/2和y=e
x
的图形,过点(0,1)的曲线c
3
是一单调增函数的图形,过c
2
上任一点M(x,y)分别作垂直于x轴和y轴的直线l
x
和l
y
.记c
1
,c
2
与l
x
所围图形的面积为S
1
(x);c
2
,c
3
与l
y
所围图形的面积为S
2
(y).如果总有S
1
(x)=S
2
(y),求曲线c
3
的方程x=φ(y).
选项
答案
利用定积分的几何意义可确定面积S
1
(x),S
2
(y).再由S
1
(x)=S
2
(y)可建立积分等式,求导可得到微分方程,解此方程即可求出所需的函数关系. 先求出S
1
(x),S
2
(y)的表达式,由定积分的几何意义,利用式(1.3.5.1)得到 S
1
(x)=∫
0
x
[e
t
一[*](1+e
t
)]dt=[*]∫
0
x
(e
t
一1)dt=[*](e
x
—x—1), S
2
(y)=∫
1
y
[lnt一φ(t)]dt 由题设S
1
(x)=S
2
(y)得到 [*]=∫
1
y
[lnt—φ(t)]dt. 因点M在曲线c
2
上,故y=e
x
,即x=lny.于是由上式得 [*]=∫
1
y
[lnt一φ(t)]dt, 两边对y求导得 [*]=lny一φ(y)=lny一x, 故曲线c
3
的方程为x=φ(y)=lny一(y一1)/(2y).
解析
转载请注明原文地址:https://kaotiyun.com/show/1JV4777K
0
考研数学二
相关试题推荐
试确定常数a与n的一组值,使得当x→0时,一ln[e(1+x2)]与axn为等价无穷小.
求下列函数的导数与微分:(Ⅰ)设y=,求dy;(Ⅱ)设y=arctaneχ-;(Ⅲ)设y=(χ-1),求y′,与y′(1).
设f(χ),g(χ)在(a,b)内可导,g(χ)≠0且=0(χ∈(a,b)).证明:存在常数c,使得f(χ)=cg(χ),χ∈(a,b).
已知齐次线性方程组(I)的基础解系为ξ1=[1,0,1,1]T,ξ2=[2,1,0,一1]T,ξ3=[0,2,1,一1]T,添加两个方程后组成齐次线性方程组(Ⅱ),求(Ⅱ)的基础解系.
飞机以匀速v沿y轴正向飞行,当飞机行至O时被发现,随即从χ轴上(χ0,0)处发射一枚导弹向飞机飞去(χ0>0),若导弹方向始终指向飞机,且速度大小为2v.(1)求导弹运行的轨迹满足的微分方程及初始条件;(2)导弹运行方程.
求极限
飞机以匀速v沿y轴正向飞行,当飞机行至O时被发现,随即从x轴上(x0,0)处发射一枚导弹向飞机飞去(x0>0),若导弹方向始终指向飞机,且速度大小为2v.求导弹运行的轨迹满足的微分方程及初始条件;
(1997年试题,一)已知在x=0处连续,则a=_________.
[2002年]=__________.
随机试题
联系实际论述了解学生的内容与方法。
马克思主义中国化第一次历史性飞跃的理论成果是【】
治疗小叶性肺炎,常选用()。
甲与乙订立房屋租赁合同,约定租期5年。半年后,甲将该出租房屋出售给丙,但未通知乙。不久,乙以其房屋优先购买权受侵害为由,请求法院判决甲丙之间的房屋买卖合同无效。下列哪一表述是正确的?()(13年司考.卷三.单10)
下列选项中属于《物业管理条例》规定,业主在物业管理活动中应当履行的义务有()。
我国历史上最早的一部天文历法是()。
1999年,中国科学院金属研究所合成出高质量的()纳米材料,使我国新型贮氢材料研究一举跃上世界先进水平。
一、注意事项1.申论考试,与传统作文考试不同,是对分析驾驭材料的能力与对文字表达能力并重的考试。2.参考时限,阅读资料40分钟,作答110分钟。3.仔细阅读给定的材料,按申论要求依次作答,答案书写在指定位置。二、给定材料1.今年5
下列属于心智技能操作的是()
TakingVacationsExperiencesan82PercentIncreaseinJobPerformanceA)Thistimeofyear,manyEuropeansarelookingforwardt
最新回复
(
0
)