首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(χ)与g(χ)都在区间[0,1]上连续,在区间(0,1)内可导,且f(0)=g(0),f(1)=g(1).求证:存在ξ∈(0,)与η∈(,1)使得f′(ξ)+f′(η)=g′(ξ)+g′(η).
设函数f(χ)与g(χ)都在区间[0,1]上连续,在区间(0,1)内可导,且f(0)=g(0),f(1)=g(1).求证:存在ξ∈(0,)与η∈(,1)使得f′(ξ)+f′(η)=g′(ξ)+g′(η).
admin
2018-06-12
78
问题
设函数f(χ)与g(χ)都在区间[0,1]上连续,在区间(0,1)内可导,且f(0)=g(0),f(1)=g(1).求证:存在ξ∈(0,
)与η∈(
,1)使得f′(ξ)+f′(η)=g′(ξ)+g′(η).
选项
答案
把ξ与η分离至等式两端可得 f′(ξ)+f′(η)=g′(ξ)+g′(η)[*]f′(ξ)-g′(ξ)=-f′(η)+g′(η) [*][f(χ)-g(χ)]′|
χ=ξ
=-[f(χ)-g(χ)]′|
χ=η
对函数F(χ)=f(χ)-g(χ)应用拉格朗日中值定理,由于F(χ)在[0,[*]]上连续,在(0,[*]]内可导,故存在ξ∈(0,[*])使得 [*] 又由于F(χ)在[[*],1]上连续,在[[*],1)内可导,故存在η∈([*],1)使得 [*] 将①式与②式相加,即知存在ξ∈(0,[*])与η∈([*],1)使得 0=[*][f′(ξ)-g′(ξ)]+[*][f′(η)-g′(η)] [*]f′(ξ)+f′(η)=g′(ξ)+g′(η).
解析
转载请注明原文地址:https://kaotiyun.com/show/1Tg4777K
0
考研数学一
相关试题推荐
设A为m×n矩阵,B为n×m矩阵,若AB=E,则()
已知矩阵A的伴随阵A*=diag(1,1,1,8),且ABA-1=BA-1+3E,求B.
设矩阵相似,求χ,y;并求一个正交阵P,使P-1AP=A.
设A=,B是3阶非零矩阵,且AB=O,a=_______.
已知n元齐次线性方程组A1χ=0的解全是A2χ=0的解,证明A2的行向量可以由A1的行向量线性表示.
已知函数y(χ)可微(χ>0)且满足方程y(χ)-1=∫1χdt(χ>0)则y(χ)=_______.
求使不等式对所有的自然数n都成立的最大的数α和最小的数β
设f(x)=∫0tanxarctant2dt,g(x)=x—sinx,当x→0时,比较这两个无穷小的关系。
设X,Y为随机变量,且E(X)=1,E(Y)=2,D(X)=4,D(Y)=9,ρXY=一,用切比雪夫不等式估计P{|X+Y一3|≥10}.
随机试题
社会学的管理功能表现在【】
试述尊重客观规律和发挥主观能动性辩证关系的原理及其对我国社会主义现代化建设的指导意义。
纯蔗糖近饱和水溶液称为单糖浆,其浓度是
猩红热患儿的皮疹特点,以下哪项不正确
当企业研发和营销能力较强、经营的产品市场异质性又比较高时,企业应选择的市场战略为()。
有些教师,其所带班级的考试成绩总是处在年级前茅,个人的教育教学能力、工作能力都特别强,但是学生对其满意度却不是很高,这是由于()。
课的类型是由()课的种类。
2013年我国货物进出口总额比2009年增长:
某单位要从100名报名者中挑选出20名献血者进行体检。最不可能被挑选上的是1993年以来已经献过血,或是1995年以来在献血体检中不合格的人。如果上述断定是真的,那么以下哪项所言及的报名者最有可能被选上?
在塑造理想人格的过程中,最重要的就是要奋发向上、切磋践履、修身养性。而在加强道德修养的过程中,也需要正确充分地发挥自身的主观能动作用。下列选项中,与“仁远乎哉?我欲仁,斯仁至矣”寓意相同的有
最新回复
(
0
)