首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(χ)与g(χ)都在区间[0,1]上连续,在区间(0,1)内可导,且f(0)=g(0),f(1)=g(1).求证:存在ξ∈(0,)与η∈(,1)使得f′(ξ)+f′(η)=g′(ξ)+g′(η).
设函数f(χ)与g(χ)都在区间[0,1]上连续,在区间(0,1)内可导,且f(0)=g(0),f(1)=g(1).求证:存在ξ∈(0,)与η∈(,1)使得f′(ξ)+f′(η)=g′(ξ)+g′(η).
admin
2018-06-12
77
问题
设函数f(χ)与g(χ)都在区间[0,1]上连续,在区间(0,1)内可导,且f(0)=g(0),f(1)=g(1).求证:存在ξ∈(0,
)与η∈(
,1)使得f′(ξ)+f′(η)=g′(ξ)+g′(η).
选项
答案
把ξ与η分离至等式两端可得 f′(ξ)+f′(η)=g′(ξ)+g′(η)[*]f′(ξ)-g′(ξ)=-f′(η)+g′(η) [*][f(χ)-g(χ)]′|
χ=ξ
=-[f(χ)-g(χ)]′|
χ=η
对函数F(χ)=f(χ)-g(χ)应用拉格朗日中值定理,由于F(χ)在[0,[*]]上连续,在(0,[*]]内可导,故存在ξ∈(0,[*])使得 [*] 又由于F(χ)在[[*],1]上连续,在[[*],1)内可导,故存在η∈([*],1)使得 [*] 将①式与②式相加,即知存在ξ∈(0,[*])与η∈([*],1)使得 0=[*][f′(ξ)-g′(ξ)]+[*][f′(η)-g′(η)] [*]f′(ξ)+f′(η)=g′(ξ)+g′(η).
解析
转载请注明原文地址:https://kaotiyun.com/show/1Tg4777K
0
考研数学一
相关试题推荐
设α1,α2,α3是4元非齐次线性方程组Aχ=b的3个解向量,且r(A)=3,α1=(1,2,3,4)T,α2+α3(0,1,2,3)T,c表示任意常数,则线性方程组Aχ=b的通勰χ=()
设A为n阶矩阵(n≥2),A*为A的伴随矩阵,证明
已知n元齐次线性方程组A1χ=0的解全是A2χ=0的解,证明A2的行向量可以由A1的行向量线性表示.
证明:当成立.
设函数f(x)在区间[a,+∞)内连续,且当x>a时,f’(x)>l>0,其中l为常数.若f(a)<0,则在区间内方程f(x)=0的实根个数为()
设y(x)是方程y(4)-y’’=0的解,且当x→0时,y(x)是x的3阶无穷小,求y(x).
设事件A出现的概率为p=0.5,试利用切比雪夫不等式,估计在1000次独立重复试验中事件A出现的次数在450到550次之间的概率a.
设向量组(Ⅰ)与向量组(Ⅱ),若(Ⅰ)可由(Ⅱ)线性表示,且r(Ⅰ)=r(Ⅱ)=r.证明:(Ⅰ)与(Ⅲ)等价.
设a<b,证明:不等式
随机试题
35公斤小儿的体表面积为
下列哪种情况不属于土地增值税的征收范围?()
供应链的特点不包括【】
与相应抗原结合后,能与Clq结合活化补体的Ig是
A.细菌性痢疾B.Crohn病C.溃疡性结肠炎D.阿米巴肠炎E.肠结核病变为非干酪性肉芽肿可见于
既能涩肠止泻,又能安蛔止痛的药物是()。
糖皮激素治疗顽固哮喘的机制错误的是
长期聘用制度保住了大学里专职人员的工作,其最好的理由是这种制度允许老资格的教职员工雇用比他们更聪明的教员,而同时仍能保持其稳定位置,除非他们自己卷入道德卑鄙——一个在目前环境下几乎无法定义的概念——的行为中,否则那些年轻的甭想能翻过来把他们解雇掉。然而这一
下列程序的运行结果是()。#inc1udevoidsub(int*s,int*y){staticintm=4;*y=s[0];m++;}voidmain(){
Allthewallsinthebuildinghadthesamelayout.
最新回复
(
0
)