首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-∞,a)内可导,,求证:f(x)在(-∞,a)内至少有一个零点.
设f(x)在(-∞,a)内可导,,求证:f(x)在(-∞,a)内至少有一个零点.
admin
2017-05-31
38
问题
设f(x)在(-∞,a)内可导,
,求证:f(x)在(-∞,a)内至少有一个零点.
选项
答案
由极限的不等式性质,[*]δ>0,当x∈[a-δ,a)时[*]>0,即f(x)<0,也就有f(a-δ)<0.[*]x
0
<a-δ,当x≤x
0
时f’(x)≤[*]<0.于是由微分中值定理知,当x<x
0
,[*]ξ∈(x,x
0
) 使得 f(x)=f(x
0
)+f’(ξ)(x-x
0
)≥f(x
0
)+[*](x-x
0
), 由此可得[*]使得f(z1)>0. 在[x
1
,a-δ]上应用连续函数零点存在性定理,f(x)在(x
1
,a-δ)上至少存在一个零点.
解析
转载请注明原文地址:https://kaotiyun.com/show/1ut4777K
0
考研数学二
相关试题推荐
证明下列函数(C1,C2为任意常数)是方程xy"+2y’-xy=ex的通解。
求微分方程x2y’+xy=y2满足初始条件y|x=1=1的特解。
设y=f(x)为区间[0,1]上的非负连续函数.证明:存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积.
设某工厂生产甲乙两种产品,产量分别为x件和y件,利润函数为L(x,y)=6x-x2+16y-4y2-2(万元).已知生产这两种产品时,每件产品都要消耗原料2000kg,现有该原料12000kg,问两种产品各生产多少时总利润最大?最大利润是多少?
求下列极限:
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0写出f(x)的带拉格朗日余项的一阶麦克劳林公式;
记方程组(I)和(Ⅱ)的系数矩阵分别是A和B.由于曰的每一行都是Ax=0的解,故ABT=0,那么BAT=(AB)T=0.因此,A的行向量是方程组(Ⅱ)的解.由于曰的行向量是(I)的基础解系,它们应线性无关,从而知r(B)=n.且由(I)的解的结构,知2
本题为“1x”型未定式,除可以利用第二类重要极限进行计算或化为指数函数计算外,由于已知数列的表达式,也可将n换为x转化为函数极限进行计算.一般[*]
(2000年试题,一)设E为四阶单位矩阵,且B=(E+A)-1(E—A),则(E+B)-1=___________.
设函数f(x)在[a,b]上连续,f(a)=f(b)=0,且fˊ(a)<0,fˊ(b)<0.求证:f(x)在(a,b)内必有一个零点.
随机试题
肠结核好发于
下列哪项不符合实验设计原则
下列哪项不是痢疾的必有症状
在每次报送书面文件的同时,发行人应报送两份相应的电子文件。发行结束后,发行人应将募集说明书的电子文件及历次报送的电子文件汇总报送中国证监会备案。()
()要求银行必须有较多的产品可提供,或者适用于开发创新成本低的某类产品;()需要抓住产品本身的特点,进行产品优势定位。
广告媒体的总体特点包括()。
提出认知发现理论,提倡发现学习的教育学家和心理学家是()。
下列属于托尔曼的认知——目的说的观点的是()
任何国家,只有稳定,才能发展。以下各项都符合题干的条件,除了:
Foryears,mentalhealthprofessionalsweretrainedtoseechildrenasmereproductsoftheirenvironmentthatwereborngoodun
最新回复
(
0
)