首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f=2x12+2x22+ax32+2x1x2+2bx1x3+2x2x3经过正交变换X=QY,化为标准形f=y12+y22+4y32,求参数a,b及正交矩阵Q.
设二次型f=2x12+2x22+ax32+2x1x2+2bx1x3+2x2x3经过正交变换X=QY,化为标准形f=y12+y22+4y32,求参数a,b及正交矩阵Q.
admin
2019-08-06
50
问题
设二次型f=2x
1
2
+2x
2
2
+ax
3
2
+2x
1
x
2
+2bx
1
x
3
+2x
2
x
3
经过正交变换X=QY,化为标准形f=y
1
2
+y
2
2
+4y
3
2
,求参数a,b及正交矩阵Q.
选项
答案
二次型f=2x
1
2
+2x
2
2
+ax
3
2
+2x
1
x
2
+2bx
1
x
3
+2x
2
x
3
的矩阵形式为f=X
T
AX 其中 [*] 所以A~B(因为正交矩阵的转置矩阵即为其逆矩阵),于是A的特征值为1,1,4. 而|λE-A|=λ
3
-(a+4)λ
2
+(4a-b
2
+2)λ+(-3a-2b+2b
2
+2),所以有 λ
3
-(a+4)λ
2
+(4a-b
2
+2)λ+(-3a-2b+2b
2
+2)=(λ-1)
2
(λ-4),解得a=2,b=1.当λ
1
=λ
2
=1时,由(E-A)X=0得 [*] 由λ
3
=4时,由(4E-A)X=0得 [*] 显然ξ
1
,ξ
2
,ξ
3
两两正交,单位化为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/1wJ4777K
0
考研数学三
相关试题推荐
设A=E-ααT,其中α为n维非零列向量.证明:当α是单位向量时A为不可逆矩阵.
设二维非零向量α不是二阶方阵A的特征向量.若A2α+Aα一6α=0,求A的特征值,讨论A可否对角化;
设f(x)=a1ln(1+x)+a21n(1+2x)+…+an1n(1+nx),其中a1,a2,…,an为常数,且对一切x有|f(x)|≤|ex一1|.证明:|a1+2a2+…+nan|≤1.
设an=∫01x2(1一x)ndx,讨论级数的敛散性,若收敛求其和.
设f(x)是二阶常系数非齐次线性微分方程y’’+Py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,().
两名射手各向自己的靶独立射击,直到有一次命中时该射手才(立即)停止射击.如果第i名射手每次命中概率为pi(0<pi<1,i=1,2),则两射手均停止射击时脱靶(未命中)总数的数学期望为_________.
已知函数z=u(x,y)eax+by,其中u(x,y)具有二阶连续偏导数,且.
.设f(x)=sinx—∫0x(x—t)f(t)dt,其中f(x)为连续函数,求f(x).
已知(X,Y)在以点(0,0),(1,一1),(1,1)为顶点的三角形区域上服从均匀分布.(I)求(X,Y)的联合密度函数f(x,y);(Ⅱ)计算概率P{X>0,Y>0},
随机试题
股票按照股东权利和义务不同可分为______和______。
王先生前些年下岗后,自己创办了一家公司。公司开始只有不到十个人,所有人都直接由王先生负责。后来,公司发展很快,王先生就任命了一个副总经理,由他负责公司的日常事务并向他汇报,自己不再直接过问各部门的业务。在此过程中,该公司沟通网络的变化过程是(
可直接引起感染性发热的是
(2008)一额定电压为10kV的静电电容器,其容抗值为10.5Ω,接在6kV母线上,电容器在额定电压下供给母线的无功功率为()。
禁止危及广播电视信号监测设施的安全和损害其使用效能的行为包括()。
以下具体流程不属于风险管理部门所承担的是()。
学校教育在人的发展中起决定性作用。
数字化时代,文字记录方式发生革命性变革,随着电脑的普及,无纸化办公开始出现,一切全都在电脑中操作。无纸化办公、无笔化写字也进入百姓家,电脑对我们学习和工作来说带来很大变化,但也正是由于这种方便,助长了人们懒惰和僵化,“失写症”也随之而生。一项千百年来被人们
We’vehalvedthepriceofliterallythousandsofbooks,includinghundredsofbrandnewtitles.We’vealsotaken25%offaudiobo
BeforeWorldWarII,blacksintheNorthlivedinghettos,becausetheycouldnotaffordhousesoutsidethisarea.IntheSouth
最新回复
(
0
)