首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设 (I)证明f(x)在x=0处连续; (Ⅱ)求区间(-1,﹢∞)内的f’(x),并由此讨论区间(-1,﹢∞)内f(x)的单调性.
设 (I)证明f(x)在x=0处连续; (Ⅱ)求区间(-1,﹢∞)内的f’(x),并由此讨论区间(-1,﹢∞)内f(x)的单调性.
admin
2019-08-11
84
问题
设
(I)证明f(x)在x=0处连续;
(Ⅱ)求区间(-1,﹢∞)内的f
’
(x),并由此讨论区间(-1,﹢∞)内f(x)的单调性.
选项
答案
(I)由题设当x∈(-1,﹢∞),但x≠0时f(x)=[*],所以 [*] 所以f(x)在x=0处连续. (Ⅱ)[*] 下面求区间(-1,﹢∞)内x≠0处的f
’
(x): [*] 为讨论f
’
(x)的符号,取其分子记为g(x),即令 g(x)=(1﹢x)ln
2
(1﹢x)-x
2
,有g(0)=0. g
’
(x)=21n(1﹢x)﹢ln
2
(1﹢x)-2x,有g
’
(0)=0, 当-1<x<﹢∞,但x≠0时, [*] 由泰勒公式有当-1<x<﹢∞,但x≠0时,g(x)=[*]g
”
(ξ)x
2
<0,ξ介于0与x之间. 所以当-1<x<﹢∞,但x≠0时,f
’
(x)<0.又由f
’
(0)=[*],所以f
’
(x)<0(-1<x<﹢∞), 由定理:设f(x)在区间(a,b)内连续且可导,导数f
’
(x)<0,则f(x)在区间(a,b)内为严格单调减少.故f(x)在区间(-1,﹢∞)内严格单调减少.
解析
转载请注明原文地址:https://kaotiyun.com/show/1yN4777K
0
考研数学二
相关试题推荐
求y″-y=e|x|满足初始条件y(1)=0,yˊ(1)=0的特解.
设.则存在初等矩阵使得B=()[img][/img]
设微分方程作自变量变换t=lnx以及因变量变换,请将原微分方程变换为z关于t的微分方程;
由方程2y3-2y2+2xy+y-x2=0确定的函数y=y(x)()
设求区间(-1,+∞)上的fˊ(x),并由此讨论区间(-1,+∞)上f(x)的单调性.
(10年)函数y=In(1—2x)在x=0处的n阶导数y(n)(0)=________.
(07年)设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令un=f(n)(n=1,2,…),则下列结论正确的是
(08年)设f(x)是区间[0,+∞)上具有连续导数的单调增加函数,且f(0)=1.对任意的t∈[0,+∞),直线x=0,x=t,曲线y=f(x)以及x轴所围成的曲边梯形绕x轴旋转一周生成一旋转体.若该旋转体的侧面面积在数值上等于其体积的2倍,求函数f(x
计算其中D由不等式x2+y2≤x+y所确定.
随机试题
男孩,一岁,小儿经常产生排尿困难,尿流细,同时阴茎阴囊交界部腹侧有一个肿物,随排尿肿大。尿常规检查:有白细胞,脓细胞。小儿发育较同龄儿明显落后,因尿失禁多方求医。小儿因尿痛,小便滴沥,发热,急性膀胱尿滞留而入院。首要处理是
P波振幅在胸导联应该
A.足大趾B.足大趾端C.足中指端D.足第四趾端E.足小指端
治疗产后身痛肾虚证,应首选的方剂是
A.1年B.2年C.3年D.5年E.6个月社保经办机构和定点零售药店签订协议的有效期为()。
肺痈其成痈化脓的病理基础是__________。
某煤炭开采企业地面辅助生产系统有维修车间、锅炉房、配电室、油库、办公大楼和车库等。在维修车间,除机械加工设备外,还有1台额定起重量1.5t.提升高度2m的起重机,气焊用氧气、乙炔气瓶各5个。燃煤锅炉房有出口水压(表压)0.12MPa、额定出水温度130℃、
职业健康安全管理体系采用PDCA循环管理模式,体现了()的管理思想。
关于幼儿想象的说法,不正确的是()。
一、注意事项1.申论考试,与传统作文考试不同,是对分析驾驭材料的能力与对表达能力并重的考试。2.仔细阅读给定的资料,按照后面提出的“作答要求”依次作答。二、给定资料[材料一]2005年6~8月,患者翁文辉在哈尔滨医科
最新回复
(
0
)