首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[a,b]上连续,在(a,b)内可导(a>0),且f(a)=0.证明:存在ξ∈(a,b),使得f(ξ)=f′(ξ).
设f(χ)在[a,b]上连续,在(a,b)内可导(a>0),且f(a)=0.证明:存在ξ∈(a,b),使得f(ξ)=f′(ξ).
admin
2019-08-23
39
问题
设f(χ)在[a,b]上连续,在(a,b)内可导(a>0),且f(a)=0.证明:存在ξ∈(a,b),使得f(ξ)=
f′(ξ).
选项
答案
令φ(χ)=(b-χ)
a
f(χ),显然φ(χ)在[a,b]上连续,在(a,b)内可导, 因为φ(a)=φ(b)=0,所以由罗尔定理,存在ξ∈(a,b),使得φ′(ξ)=0, 由φ′(χ)=(b-χ)
a-1
[(b-χ)f′(χ)-af(χ)]得 (b-ξ)
a-1
[(b-ξ)f′(ξ)-af(ξ)]且(b-ξ)
a-1
≠0,故f(ξ)=[*]f′(ξ).
解析
转载请注明原文地址:https://kaotiyun.com/show/22A4777K
0
考研数学二
相关试题推荐
(I)设A是n阶方阵,满足A2=A,证明A相似于对角矩阵;(Ⅱ)设A=,求可逆矩阵P使得P-1AP=A,其中A是对角矩阵.
设微分方程xy’﹢2y=2(ex-1).(I)求上述微分方程的通解,并求使存在的那个解(将该解记为y0(x)),以及极限值;(Ⅱ)补充定义之后使y0(x)在x=0处连续,求y0’(x),并请证明:无论x=0还是x≠0,y0’(x)均连续.
设y=f(x)=.(I)讨论函数f(x)的奇偶性、单调性、极值;(Ⅱ)讨论曲线y=f(x)的凹凸性、拐点、渐近线,并根据(I).(Ⅱ)的讨论结果,画出函数y=f(x)的大致图形.
已知摆线的参数方程为其中0≤t≤2π,常数a>0.设该摆线一拱的弧长的数值等于该弧段绕z轴旋转一周所围成的旋转曲面面积的数值.求a的值.
设n为正整数,F(x)=∫1nxe-t3dt+∫ee(n+1)xdt.(I)证明对于给定的n,F(x)有且仅有1个(实)零点,并且是正的,记该零点为an;(Ⅱ)证明{an}随n的增加而严格单调减少且=0.
(I)求定积分an=∫02x(2x-x2)ndx,n=1,2,…;(Ⅱ)对于(I)中的an,证明an﹢1<an(n=1,2,…)且=0.
设平面图形D由χ2+y2≤2χ与y≥χ围成,求图形D绕直线χ=2旋转一周所成的旋转体的体积.
(1)求二元函数f(χ,y)=χ2(2+y2)+ylny的极值.(2)求函数f(χ,y)=(χ2+2χ+y)ey的极值.
设A为n阶方阵,齐次线性方程组Ax=0有两个线性无关的解向量,A*是A的伴随矩阵,则()
设有微分方程y′-2y=φ(χ),其中φ(χ)=试求在(-∞,+∞)内的连续函数为_______,y=y(χ),使之在(-∞,1),(1,+∞)内都满足所给方程,且满足条件y(0)=0.
随机试题
InflationBusinessandgovernmentleadersalsoconsidertheinflationratetobeanimportantgeneralindicator.Inflationi
下列的主页地址有效的是()。
经络气血逆乱,“厥气上逆”发为“霍乱”的是
静脉留置针输液时,止血带与穿刺点之间的距离应为
万姓检察官与杨姓检察官系大学同学,毕业后考入同一检察院工作。某次万姓检察官承办一疑难案件,辛苦工作月余进展甚微,终日压力巨大、精神痛苦。杨姓检察官见状,出于关心私下向万姓检察官打听此案情况及目前现状;万姓检察官大吐苦水,约杨姓检察官当晚来家,将案件所有情况
在各个环节的方案比选中,()是技术政策、发展战略、规划的制定和项目评价的重要内容和组成部分。
我国保险监管形式的发展过程是( )。
关于财务会计报告的相关内容,下列说法错误的是()。
下列选项中,属于上市客户法人治理关注点的是()。
瓷器区别于陶器,是因为瓷器的主要原料是()。
最新回复
(
0
)