首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y(x),y(x)与y(x)是二阶线性非齐次方程 y’’+p(x)y’+q(x)y=f(x) ① 的3个解,且 则式①的通解为________
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y(x),y(x)与y(x)是二阶线性非齐次方程 y’’+p(x)y’+q(x)y=f(x) ① 的3个解,且 则式①的通解为________
admin
2019-05-14
63
问题
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y(x),y(x)与y(x)是二阶线性非齐次方程
y’’+p(x)y’+q(x)y=f(x) ①
的3个解,且
则式①的通解为________
选项
答案
y=C
1
(y
1
-y
2
)+C
2
(y
2
-y
3
)+y
1
,其中C
1
,C
2
为任意常数
解析
由非齐次线性方程的两个解,可构造出对应的齐次方程的解,再证明这样所得到的解线性无关便可.
y
1
-y
2
与y
2
-y
3
均是式①对应的线性齐次方程
y’’+p(x)y’+q(x)y=0 ②
的两个解.今证它们线性无关.事实上,若它们线性相关,则存在两个不全为零的常数k
1
与
2
使k
1
(y
1
-y
2
)+k
2
(y
2
-y
3
)=0. ③
设k
1
≠0,又由题设知y
2
-y
3
≠0,于是式③可改写为
=常数,矛盾.若k
1
=0,由y
2
-y
3
≠0,故由式③推知k
2
=0矛盾.这些矛盾证得y
1
-y
2
与y
2
-y
3
线性无关.于是 Y=C
1
(y
1
-y
2
)+C
2
(y
2
-y
3
) ④
为式②的通解,其中C
1
,C
2
为任意常数,从而知y=C
1
(y
1
-y
2
)+C
2
(y
2
-y
3
)+y
1
⑤
为式①的通解.
转载请注明原文地址:https://kaotiyun.com/show/2O04777K
0
考研数学一
相关试题推荐
已知A是3阶不可逆矩阵,-1和2是A的特征值,B=A2-A-2E,求B的特征值,并问B能否相似对角化,并说明理由.
设α0是A的特征向量,则α0不一定是其特征向量的矩阵是
证明定积分I=sinx2dx>0.
将函数f(x)=sin(x+a)展开成x的幂级数,并求收敛域.
设随机变量X和Y的相关系数为0.9,若Z=2X-1,则Y与Z的相关系数为_______.
假设排球运动员的平均身高(单位:厘米)为μ,标准差为4.求100名排球运动员的平均身高与所有排球运动员平均身高之差在(-1,1)内的概率.
方程y"一3y’+2y=2x的通解为___________.
设总体X~N(0,8),Y~N(0,22),且X1及(Y1,Y1)分别为来自上述两个总体的样本,则
将f(x)=arctanx展开成x的幂级数.
随机试题
下列关于建设项目环境影响评价的表述错误的是()
治疗慢性肺源性心脏病应以治疗右心衰竭为主。
合同生效应具备的条件有( )。
在固定总价合同形式下,承包人承担的风险是()。
计算应收账款占流动资产比重是为了分析()。
公民、法人和其他组织对()不服,不能申请劳动保障行政复议。
“J—1”字签证发给()。
SAS是()量表的英文缩写。
构成共同违反治安管理行为,所必须具备的条件有()。
______(luck),shesurvivedtheaircrash.
最新回复
(
0
)