首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明: 存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵。
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明: 存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵。
admin
2019-09-29
83
问题
设A,B为三阶矩阵,且AB=A-B,若λ
1
,λ
2
,λ
3
为A的三个不同的特征值,证明:
存在可逆矩阵P,使得P
-1
AP,P
-1
BP同时为对角矩阵。
选项
答案
因为A有三个不同的特征值λ
1
,λ
2
,λ
3
,所以A可以对角化,设A的三个线性无关的特征向量为ξ
1
,ξ
2
,ξ
3
,则有A(ξ
1
,ξ
2
,ξ
3
)=(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
), BA(ξ
1
,ξ
2
,ξ
3
)=B(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
), AB(ξ
1
,ξ
2
,ξ
3
)=B(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
), 于是有ABξ
i
=λ
i
Bξ
i
,i=1,2,3. 若Bξ
i
≠0,则Bξ
i
是A的属于特征值λ
i
的特征向量,又λ
i
为单根,所以有Bξ
i
=μ
i
ξ
i
; 若Bξ
i
=0,则ξ
i
是B的属于特征值0的特征向量。 无论哪种情况,B都可以对角化,而且ξ
i
是B的特征向量,因此,令P=(ξ
1
,ξ
2
,ξ
3
),则P
-1
AP,P
-1
BP同为对角阵。
解析
转载请注明原文地址:https://kaotiyun.com/show/2UA4777K
0
考研数学二
相关试题推荐
设y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μλ2是该方程的解,λy1一μy2是该方程对应的齐次方程的解,则()
设f(x)=|x|sin2x,则使导数存在的最高阶数n=()
设A,B分别为m阶和n阶可逆矩阵,则的逆矩阵为().
[*]其中C为任意常数
曲线y2=2x在任意点处的曲率为________.
微分方程xy’+y=0满足初始条件y(1)=2的特解为__________。
设有3维列向量问λ取何值时(1)β可由α1,α2,α3线性表示,且表达式唯一?(2)β可由α1,α2,α3线性表示,但表达式不唯一?(3)β不能由α1,α2,α3线性表示?
设二阶常系数线性微分方程y〞+ay′+by=ceχ有特解y=e2χ+(1+χ)eχ,确定常数a,b,c,并求该方程的通解.
求星形线的质心.
设平面薄片所占的区域D由抛物线y=x2及直线y=x所围成,它在(x,y)处的面密度ρ(x,y)=x2y,求此薄片的重心.
随机试题
国家行政机关是最主要的________。
根据《防治海洋工程建设项目污染损害海洋环境管理条例》中的规定,下列海洋工程建设项目,其环境影响报告书必须由国家海洋主管部门核准的是()。
工人人数最多的厂是()。
清华大学博士到一家企业当普通员工,有人说这是典型的大材小用,但也有人说只要实现了他的自身价值就可以了,对此.你怎么看?在实际工作中,如果你是那位清华博士,你会怎么做?
一、注意事项1.申论考试,与传统作文考试不同,是对分析驾驭材料的能力与对表达能力并重的考试。2.作答参考时限:阅读材料40分钟,作答110分钟。3.仔细阅读给定的资料,按照后面提出的“申论要求”依次作答。二、给定资料(1)
物质文化、技术文化的传播,其意义不仅仅局限于物质的和技术的领域,它们还可能一影响人们的精神世界和生活方式,甚至产生意料之外的效果。因为这些物质产品和技术发明,还体现了创造者、发明者的精神理念、审美情趣和价值追求,体现了它们作为某一文化共同体成员所接受的文化
(2010年真题)简述防卫过当的成立条件。
设某一设备由三大部件构成,设备运转时,各部件需调整的概率分别为0.1,0.2,0.3,若各部件的状态相互独立,求同时需调整的部件数X的分布函数.
分布式数据库的分布透明性使用户完全感觉不到数据是分布的,使分布式数据库具有分布式透明性的主要因素是()。
Children,wehaveto______whatwehavenowanditisforyoutogetbetterthingsinthefuture.
最新回复
(
0
)