首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4是4元非齐次线性方程组Aχ=b的4个解向量,且α1+α2=(2,4,6,8)T,α2+α3+α4=(3,5,7,9)T,α1+2α2-α3=(2,0,0,2)T,若秩r(A)=2,则方程组Aχ=b的通解是
设α1,α2,α3,α4是4元非齐次线性方程组Aχ=b的4个解向量,且α1+α2=(2,4,6,8)T,α2+α3+α4=(3,5,7,9)T,α1+2α2-α3=(2,0,0,2)T,若秩r(A)=2,则方程组Aχ=b的通解是
admin
2018-06-12
57
问题
设α
1
,α
2
,α
3
,α
4
是4元非齐次线性方程组Aχ=b的4个解向量,且α
1
+α
2
=(2,4,6,8)
T
,α
2
+α
3
+α
4
=(3,5,7,9)
T
,α
1
+2α
2
-α
3
=(2,0,0,2)
T
,若秩r(A)=2,则方程组Aχ=b的通解是
选项
A、
B、
C、
D、
答案
A
解析
因为方程组Aχ=有解,且秩r(A)=2,那么n-r(A)=4-2=2,故通解形式为α+k
1
η
1
+k
2
η
2
.显然选项D不符合解的结构,应排除.选项C中(3,5,7,9)
T
不是Aχ=b的解也应排除.下面应当用解的性质分析出特解α及导出组的基础解系.
由于A(α
1
+α
2
)=2b,有A
=b,因此(1,2,3,4)
T
是方程Aχ=b的一个解.
又(α
2
+α
3
+α
4
)-(α
1
+α
2
)=α
3
+(α
4
-α
1
)=(1,1,1,1)
T
也是方程组Aχ=b的解.而
(α
1
+α
2
)-(α
1
+2α
2
-α
3
)=α
3
-α
2
=(0,4,6,6)
T
,
3(α
1
+α
2
)-2(α
2
+α
3
+α
4
)=2(α
1
-α
3
)+(α
1
-α
4
)+(α
2
-α
4
)=(0,2,4,6)
T
是导出组Aχ=0的解.
故应选A.
转载请注明原文地址:https://kaotiyun.com/show/2Ug4777K
0
考研数学一
相关试题推荐
f(χ1,χ2,χ3)=5χ12+5χ22+cχ32-2χ1χ2+6χ1χ3-6χ2χ3的秩为2.(1)求参数c及此二次型对应矩阵的特征值;(2)指出方程f(χ1,χ2,χ3)=1表示何种二次曲面.
设a1,a2线性无关,a1+b,a2+b线性相关,求向量b用a1,a2线性表示的表达式.
设A=那么(P-1)2010A(Q2011)-1=()
已知线性方程组有无穷多解,而A是3阶矩阵,且分别是A关于特征值1,-1,0的三个特征向量,求矩阵A.
设矩阵相似,求χ,y;并求一个正交阵P,使P-1AP=A.
已知y1*(χ)=χe-χ+e-2χ,y2*(χ)=χe-χ+χe-2χ,y3*(χ)=χe-χ+e-2χ+χe-2χ是某二阶线性常系数微分方程y〞+py′+qy=f(χ)的三个解,则这个方程是_______.
设4阶矩阵A=(α1,α2,α3,α4),方程组Aχ=β的通解为(1,2,2,1)T+c(1,-2,4,0)T,c任意.记B=(α3,α2,α1,β-α4).求方程组Bχ=α1-α2的通解.
计算(a>0是常数).
求微分方程y’’(3y’2-x)=y’满足初值条件y(1)=y’(1)=1的特解.
求e-x2带皮亚诺余项的麦克劳林公式.
随机试题
在ASCII码表中,根据码值由小到大的排列顺序是()。
阴偏衰的病症多见于的脏是
急性广泛前壁心肌梗死溶栓治疗开通的患者,出院后定期到门诊随访,哪种做法没有必要或者不正确
国境卫生检疫按空间划分包括
小唾液腺分泌的唾液占唾液总量的
A.益气补血,健脾养心B.滋阴养血,补心安神C.养血安神,清热除烦D.和中缓急,养心安神E.清热泻火,镇心安神
形成津液不足病理状态的原因,下列哪一项是不确切的
不属于医院基本饮食的是
用语法范畴的理论,分析现代汉语的“着”、“了”、“过”以及“起来(干起来)”、“下去(说下去)”的语法意义。
简述我国中央对特别行政区行使的权力。(2013年法学综合课简答第32题)
最新回复
(
0
)