首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4是4元非齐次线性方程组Aχ=b的4个解向量,且α1+α2=(2,4,6,8)T,α2+α3+α4=(3,5,7,9)T,α1+2α2-α3=(2,0,0,2)T,若秩r(A)=2,则方程组Aχ=b的通解是
设α1,α2,α3,α4是4元非齐次线性方程组Aχ=b的4个解向量,且α1+α2=(2,4,6,8)T,α2+α3+α4=(3,5,7,9)T,α1+2α2-α3=(2,0,0,2)T,若秩r(A)=2,则方程组Aχ=b的通解是
admin
2018-06-12
95
问题
设α
1
,α
2
,α
3
,α
4
是4元非齐次线性方程组Aχ=b的4个解向量,且α
1
+α
2
=(2,4,6,8)
T
,α
2
+α
3
+α
4
=(3,5,7,9)
T
,α
1
+2α
2
-α
3
=(2,0,0,2)
T
,若秩r(A)=2,则方程组Aχ=b的通解是
选项
A、
B、
C、
D、
答案
A
解析
因为方程组Aχ=有解,且秩r(A)=2,那么n-r(A)=4-2=2,故通解形式为α+k
1
η
1
+k
2
η
2
.显然选项D不符合解的结构,应排除.选项C中(3,5,7,9)
T
不是Aχ=b的解也应排除.下面应当用解的性质分析出特解α及导出组的基础解系.
由于A(α
1
+α
2
)=2b,有A
=b,因此(1,2,3,4)
T
是方程Aχ=b的一个解.
又(α
2
+α
3
+α
4
)-(α
1
+α
2
)=α
3
+(α
4
-α
1
)=(1,1,1,1)
T
也是方程组Aχ=b的解.而
(α
1
+α
2
)-(α
1
+2α
2
-α
3
)=α
3
-α
2
=(0,4,6,6)
T
,
3(α
1
+α
2
)-2(α
2
+α
3
+α
4
)=2(α
1
-α
3
)+(α
1
-α
4
)+(α
2
-α
4
)=(0,2,4,6)
T
是导出组Aχ=0的解.
故应选A.
转载请注明原文地址:https://kaotiyun.com/show/2Ug4777K
0
考研数学一
相关试题推荐
设矩阵A=的特征值有一个二重根,求a的值,并讨论矩阵A是否可相似对角化.
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.(1)计算PTDP,其中P=;(2)利用(1)的结果判断矩阵B-CTA-1C是否为正定矩阵,并证明结论.
设矩阵A=(a1,a2,a3,a4),其中a2,a3,a4线性无关,a1=2a2-a3,向量b=a1+a2+a3+a4,求方程Aχ=b的通解.
已知三阶矩阵A与三维非零列向量α,若向量组α,Aα,A2α线性无关,而A3α=3Aα-2A2α,那么矩阵A属于特征值λ=-3的特征向量是()
已知α1=(1,4,2)T,α2=(2,7,3)T,α3=(0,1,a)T可以表示任意一个3维向量,则a的取值是_______.
设A,B是n阶方阵,证明:AB,BA有相同的特征值.
设三元非齐次线性方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,-1,1]T,η3+η1=[0,2,0]T,求该非齐次方程的通解.
设Am×n,r(A)=m,Bn×(n-m),r(B)=n-m,且满足关系AB=O.证明:若η是齐次线性方程组Ax=0的解,则必存在唯一的ξ,使得Bξ=η.
设求曲线y=f(x)与它所有水平渐近线及Oy轴围成图形的面积.
设函数f(x)在区间[a,+∞)内连续,且当x>a时,f’(x)>l>0,其中l为常数.若f(a)<0,则在区间内方程f(x)=0的实根个数为()
随机试题
在下列减小受弯构件挠度的措施中错误的是()。
关于“精神疾病的流行病学”,下列说法错误的是
A.毛果芸香碱B.新斯的明C.阿托品D.哌替啶E.吗啡可用于治疗青光眼的药物是
A.口舌、四肢及全身麻木,头痛、头晕、精神恍惚、牙关紧闭B.头晕、头痛、烦躁不安、面部肌肉紧张、吞咽困难,伸肌与屈肌同时收缩C.咽喉干痛、烧灼感,口中金属味、流涎、腹痛腹泻,出现各种出血症状,黄疸D.胸闷,心悸,心律不齐,四肢厥冷,血压下降,心电图显
按照计价方式不同,FIDIC《土木工程施工合同条件》适用于土木工程施工的()形式。
下列关于对外贸易经营者及其管理的表述中,符合对外贸易法律制度规定的是()。
最基本、最常用的市场调查方法是()
自信心偏差主要指的是()。
课程具体表现为课程计划、课程标准和________。
下面一组中都是C语言关键字的是______。
最新回复
(
0
)