首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组α1,α2,α3,α5-α4的秩为4.
设向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组α1,α2,α3,α5-α4的秩为4.
admin
2019-08-12
56
问题
设向量组(Ⅰ)α
1
,α
2
,α
3
;(Ⅱ)α
1
,α
2
,α
3
,α
4
;(Ⅲ)α
1
,α
2
,α
3
,α
5
,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组α
1
,α
2
,α
3
,α
5
-α
4
的秩为4.
选项
答案
因为向量组(Ⅰ)的秩为3,所以α
1
,α
2
,α
3
线性无关,又因为向量组(Ⅱ)的秩也为3,所以向量α
4
可由向量组α
1
,α
2
,α
3
线性表示.因为向量组(Ⅲ)的秩为4,所以α
1
,α
2
,α
3
,α
5
线性无关,即向量α
5
不可由向量组α
1
,α
2
,α
3
线性表示,故向量α
5
-α
4
不可由α
1
,α
2
,α
3
线性表示,所以α
1
,α
2
,α
3
,α
5
-α
4
线性无关,于是向量组α
1
,α
2
,α
3
,α
5
-α
4
的秩为4.
解析
转载请注明原文地址:https://kaotiyun.com/show/2cN4777K
0
考研数学二
相关试题推荐
(2014年)设α1,α2,α3均为3维向量,则对任意常数k,l,向量组α1+kα3,α2+kα3线性无关是向量组α1,α2,α3线性无关的
若向量组α1,α2,α3线性无关,向量组α1,α2,α4线性相关,则
设A=(aij)3×3是实正交矩阵,且a11=1。b=(1,0,0)T,则线性方程组Ax=b的解是______.
(08)设A=则在实数域上与A合同的矩阵为
已知二次型f(x1,x2,x3)=x12-2x22+bx32-4x1x2+4x1x3+2ax2x3(a>0)经正交变换化成了标准形f=2y12+2y22-7y32.求a、b的值和正交矩阵P.
求下列微分方程的通解或在给定条件下的特解
设函数f(x)=其中g(x)二阶连续可导,且g(0)=1.确定常数a,使得f(x)在x=0处连续;
设函数f(x)(x≥0)可微,且f(x)>0.将曲线y=f(x),x=1,x=a(a>1)及x轴所围成平面图形绕x轴旋转一周得旋转体体积为求:f(x)的极值.
计算下列广义积分
设数列{xn}满足0<x1<1,ln(1+xn)=exn+1一1(n=1,2,…).证明当0<x<1时,ln(1+x)<x<ex一1;
随机试题
按锉纹密度分2号锉刀是指()锉刀。
在UNIX系统中,进程控制块分成两部分:_______结构和_______结构,前者常驻内存,以节省主存空间。
患者,女性。65岁,因阵发性胸闷8年,持续胸痛8小时收入院。入院时血压为150/90mmHg,诊断为急性前壁心肌梗死。住院第2日患者出现胸闷、大汗、面色苍白。体检心率126次/分,律齐,双肺未闻及干湿性啰音,血压90/50mmHg,考虑合并心源性休克。
以下关于呼吸衰竭的概念不正确的是
下列关于"基因表达"概念的叙述,错误的是
实施价格歧视的基本条件包括()。
有专家认为,央企并购地方国企并不值得大力提倡。从以往的并购重组经验来看,国企与国企之问的并购重组,效果并不比民营与国企、外资与国企重组的效果好。央企与地方国企之间,出资人代表虽然不一样,但机制和体制却相差不多_______,并不利于重组后的创新。根据文意,
结合材料回答问题材料1中国古代思想家说:“夫君者舟也,庶人者水也,水可以载舟,亦可以覆舟。”“乐民之乐者,民亦乐其乐;忧民之忧者,民亦忧其忧。乐以天下,忧以天下,然而不王者,未之有也。”材料2毛泽东指出:“人民,只有人民,才是创造世界历史的动力。”
随着Internet的发展,越来越多的计算机感染病毒的可能途径之一是
Forthispart,youareallowed30minutestowriteashortessayentitledTheAdvantagesandDisadvantagesofDistanceLearning.
最新回复
(
0
)