首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。 (Ⅰ)求A的特征值与特征向量; (Ⅱ)求正交矩阵Q和对角矩阵Λ,使得QTAQ=Λ。
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。 (Ⅰ)求A的特征值与特征向量; (Ⅱ)求正交矩阵Q和对角矩阵Λ,使得QTAQ=Λ。
admin
2019-08-06
59
问题
设三阶实对称矩阵A的各行元素之和均为3,向量α
1
=(一1,2,一1)
T
,α
2
=(0,一1,1)
T
是线性方程组Ax=0的两个解。
(Ⅰ)求A的特征值与特征向量;
(Ⅱ)求正交矩阵Q和对角矩阵Λ,使得Q
T
AQ=Λ。
选项
答案
(Ⅰ)因为矩阵A的各行元素之和均为3,所以有 [*] 则λ=3是矩阵A的特征值,α=(1,1,1)
T
是对应的特征向量。对应λ=3的全部特征向量为kα=k(1,1,1)
T
,其中k是不为零的常数。 又由题设知Aα
1
=0,Aα
2
=0,即Aα
1
=0.α
1
,Aα
2
=0.α
2
,而且α
1
,α
2
线性无关,所以λ=0是矩阵A的二重特征值,α
1
,α
2
是其对应的特征向量,因此对应λ=0的全部特征向量为 k
1
α
1
+k
2
α
2
=k
1
(一1,2,一1)
T
+k
2
(0,一1,1)
T
,其中k
1
,k
2
是不全为零的常数。 (Ⅱ)因为A是实对称矩阵,所以α与α
1
,α
2
正交,只需将α
1
与α
2
正交化。 由施密特正交化法,取 β
1
=α
1
,β
2
=α
2
一[*] 再将α,β
1
,β
2
单位化,得 [*] 令Q=(η
1
,η
2
,η
3
),则Q
—1
=Q
T
,且 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/35J4777K
0
考研数学三
相关试题推荐
设二维随机变量(X,Y)服从二维正态分布,且X~N(1,32),Y~N(0,42),且X,Y的相关系数为求E(Z),D(Z);
设的一个特征值为λ1=,其对应的特征向量为判断A是否可对角化.若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
设的一个特征值为λ1=,其对应的特征向量为求常数a,b,c;
设f(x)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=a<b=f(b).证明:存在ξi∈(a,b)(i=1,2,…,n),使得
确定常数a,b,C,使得
设A,B是任两个随机事件,下列事件中与A+B=B不等价的是().
设对任意的参数λ,讨论级数的敛散性,并证明你的结论.
设X1,X2,…,X10是来自正态总体X~N(0,22)的简单随机样本,求常数a,b,c,d,使Q=aX2+b(X2+X3)2+c(X4+X5+X6)2+e(X7+X8+X9+X10)2服从χ2分布,并求自由度m.
袋中有大小相同的10个球,其中6个红球,4个白球,现随机地抽取两次,每次取一个,定义两个随机变量X,Y如下:试就放回与不放回两种情形,求出(X,Y)的联合分布律.
求下列定积分:∫-11
随机试题
A.捻转角度小,用力轻,频率慢,操作时间短B.捻转角度小,用力重,频率快,操作时间长C.捻转角度小,用力轻,频率慢,操作时间长D.捻转角度大,用力重,频率快,操作时间长E.捻转角度大,用力轻,频率慢,操作时间短
关于绷带包扎的注意事项,哪一项是不正确的
子宫肌瘤的手术指征包括()。
下列有关银行汇票的陈述中,正确的有()。
现场审核首次会议由()主持。
你同同事一起现场执法,在执法过程中,执法对象认为不合理,因而阻挠执法,与执法人员发生争执和冲突,同时引发了不少市民前来围观。作为执法队员,你在现场会采取什么措施?怎么处理?
根据以下资料,回答101—105题2007年,全国研究与试验发展经费总支出为3710.2亿元,增长23.5%,研究与试验发展经费投入强度(与国内生产总值之比)为1.49%。按研究与试验发展人员(全时工作量)计算的人均经费支出为21.4万元,比上年增加1.
设f(χ)=ln(2χ2-χ-1),则f(n)(χ)=_______.
文件系统的多级目录结构是一种______。
在考生文件夹下,打开文档WORD2.DOCX,按照要求完成下列操作并以该文件名(WORD2.DOCX)保存文档。【文档开始】全国部分城市天气预报城市天气高温(℃)低温(℃)哈尔滨阵雪
最新回复
(
0
)