首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
下列命题正确的是( ).
下列命题正确的是( ).
admin
2018-11-22
47
问题
下列命题正确的是( ).
选项
A、若向量α
1
,α
2
,…,α
n
线性无关,A为n阶非零矩阵,则Aα
1
,Aα
2
,…,Aα
n
线性无关
B、若向量α
1
,α
2
,…,α
n
线性相关,则α
1
,α
2
,…,α
n
中任一向量都可由其余向量线性表示
C、若向量α
1
,α
2
,…,α
n
线性无关,则α
1
+α
2
,α
2
+α
3
,…,α
n
+α
1
一定线性无关
D、设α
1
,α
2
,…,α
n
是n个n维向量且线性无关,A为n阶非零矩阵,且Aα
1
,Aα
2
,…,Aα
n
线性无关,则A一定可逆
答案
D
解析
(Aα
1
,Aα
2
,…,Aa
n
)=A(α
1
,α
2
,…,α
n
),因为α
1
,α
2
,…,α
n
线性无关,所以矩阵(α
1
,α
2
,…,α
n
)可逆,于是r(Aα
1
,Aα
2
,…,Aα
n
)=r(A),而Aα
1
,Aα
2
,…,Aα
n
线性无关,所以r(A)=n,即A一定可逆,选(D).
转载请注明原文地址:https://kaotiyun.com/show/3EM4777K
0
考研数学一
相关试题推荐
设二维随机变量(X,Y)的概率密度为求:(X,Y)的边缘概率密度fX(x),fY(y);
设f(x)在[0,1]上连续,在(0,1)内有f(x)>0恒成立且xf’(x)=f(x)+ax2。由曲线y=f(x)与直线x=1,y=0围成的平面图形的面积为2。求函数y=f(x)的解析式;
二阶常系数非齐次线性方程y"-5y’+6y=2e2x的通解为y=_______。
设对x>0的空间区域内任意的光滑有向封闭曲面∑都有xf(x)dydz-xyf(x)dzdx-ze2xdxdy=0,其中函数f(x)在(0,+∞)内具有连续一阶导数,且f(x)=1,求f(x)。
计算曲面积分I=2x3dydz+2y3dzdx+3(x2—1)dxdy,其中三为曲面z=1一x2一y2(z≥)的上侧.
设二次型f(x1,x2,x3)=XTAX经过正交变换化为标准形f=2y2一y2一y2,又A*α=α,其中a一(1,1,一1)T.(Ⅰ)求矩阵A;(Ⅱ)求正交矩阵Q,使得经过正交变换X=QY,二次型f(x1,x2,x3)=XTAX化为标准
∠设f(x)在[0,B]上连续,在(0,2)内三阶可导,且=2,f(1)=1,f(2)=6.证明:存在ξ∈(0,2),使得f"’(ξ)=9.
设∑为由直线绕x轴旋转产生的曲面,则∑上点P=(一1,1,一2)处的法线方程为().
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
随机试题
绿茶精制的目的有()。
如果蛋白质的PI小于电泳缓冲液的pH
下列关于甲状腺功能亢进症的叙述,正确的是()
A.喜树碱B.硫酸长春碱C.盐酸多柔比星D.紫杉醇E.盐酸阿糖胞苷既能诱导和促进微管蛋白聚合,又可抑制微管解聚的萜类药物是()。
我省居全国第一位的矿产资源有8种,其中1种是()
成语“鸿鹄之志”最早出现在《战国策》一书。()
当我们研究中国“和平崛起”问题时,不能回避中国的和平统一前景。中国领导人所讲的“以最大努力、最大诚意来争取和平统一”,但是对于台独危险,我们将“不惜一切代价加以制止”。从总体上看,世界大趋势、亚太地区格局、两岸关系走向以至台湾内部变化,都是有利于台湾问题的
世界贸易组织的基本原则有哪些?各自的含义是什么?
Musiccomesinmanyforms;mostcountrieshaveastyleoftheirown.(56)themmofthecenturywhenjazzwasborn,Americahad
TechnoServeisanon-profitgroupthat
最新回复
(
0
)