首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:当0<a<b<π时,bsin b+2cos b+πb>asina+2cos a+πa.
证明:当0<a<b<π时,bsin b+2cos b+πb>asina+2cos a+πa.
admin
2015-08-14
57
问题
证明:当0<a<b<π时,bsin b+2cos b+πb>asina+2cos a+πa.
选项
答案
令F(x)=xsin x+2cos x+πx,只需证明F(x)在(0,π)上单调递增. F’(x)=sin x+xcos x一2sin x+π=π+xcos x—sin x,由此式很难确定F’(x)在(0,π)上的符号,为此有 F"(x)=一xsin x<0,x∈(0,π), 即函数F’(x)在(0,π)上单调递减,又F’(π)=0,所以F’(x)>0,x∈(0,π),于是F(b)>F(a),即 bsin b+2cos b+πb>asina+2cosa+πa.
解析
转载请注明原文地址:https://kaotiyun.com/show/3S34777K
0
考研数学二
相关试题推荐
设A,B分别为m×n及n×s阶矩阵,且AB=O.证明:r(A)+r(B)≤n.
设α1,α2,…,αn为n个n维向量,证明:α1,α2,…,αn线性无关的充分必要条件是任一n维向量总可由口α1,α2,…,αn线性表示.
设A,B是满足AB=O的任意两个非零阵,则必有().
设有方程组AX=0与BX=0,其中A,B都是m×n阶矩阵,下列四个命题:(1)若AX=0的解都是BX=0的解,则r(A)≥r(B)(2)若r(A)≥r(B),则AX=0的解都是BX=0的解(3)若AX=0与BX=0同解,则r(
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=-ξ1+2ξ2+2ξ3,Aξ2=2ξ1-ξ2-2ξ3,Aξ3=2ξ1-2ξ1-2ξ2-ξ3,(1)求矩阵A的全部特征值;(2)求|A*+2E|.
设A=相似于对角矩阵.求:(1)a及可逆矩阵P,使得P-1AP=A,其中A为对角矩阵;(2)A100.
设A为n阶非零矩阵,且A2=A,r(A)=r(0<r<n).求|5E+A|.
设二维随机变量(x,y)的联合密度函数为f(x,y)=则k为().
已知X的分布函数为F(x),概率密度为f(x),a为常数,则下列各函数中不一定能作为随机变量概率密度的是()
设函数z=z(x,y)是由方程z=f(x,y,z)确定的可微函数,且1-f’z≠0,则在点(z,y,z)处().
随机试题
对某病爆发流行进行调查时,首先应采取的措施是
项目监理组织也像其他组织一样,由()因素构成,各因素之间密切联系,形成一个整体。
交流接触器广泛应用于()。
债务人将其权利移交给债权人占有,用以担保债权实现的方式是( )。
各级政府、各部门、各单位均适用政府会计准则制度。()
当工作遇到挫折时,刘老师总是能够乐观、豁达地面对。这表明刘老师具备()。
Idon’tknowyouwanttokeeptheletter.I’ve______itup.
以下属于近代中国半殖民地半封建社会基本特征的有()
公平正义有多个方面的内涵,主要包括
WhydidAlicecallherfather?
最新回复
(
0
)