首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上二阶可导,且f(0)=f’(0)=f(1)=f’(1)=0.证明:方程f"(x)-f(x)=0在(0,1)内有根.
设f(x)在[0,1]上二阶可导,且f(0)=f’(0)=f(1)=f’(1)=0.证明:方程f"(x)-f(x)=0在(0,1)内有根.
admin
2018-05-21
20
问题
设f(x)在[0,1]上二阶可导,且f(0)=f’(0)=f(1)=f’(1)=0.证明:方程f"(x)-f(x)=0在(0,1)内有根.
选项
答案
令φ(x)=e
-x
[f(x)+f’(x)]. 因为φ(0)=φ(1)=0,所以由罗尔定理,存在c∈(0,1)使得φ’(c)=0, 而φ’(x)=e
-x
[f"(x)-f(x)]且e
-x
≠0,所以方程f"(c)-f(c)=0在(0,1)内有根.
解析
转载请注明原文地址:https://kaotiyun.com/show/3Zr4777K
0
考研数学一
相关试题推荐
下列结论中不正确的是()。
设二维随机变量(X1,X2)的概率密度函数为f(x1,x2),则随机变量(Y1,Y2)(其中Y1=2X1,Y2=)的概率密度函数f1(y1,y2)等于()
已知随机变量X1与X2相互独立且分别服从参数为γ1,γ2的泊松分布,已知P{X1+X2>0}=1一e-1,则E[(X1+X2)2]=________。
设α1,α2,α3,α4,α5都是四维列向量,A=(α1,α2,α3,α4),非齐次线性方程组Ax=α5,有通解kξ+η=k(1,一1,2,0)T+(2,1,0,1)T,则下列关系式中不正确的是()
设y=e3x(C1cosx+C2sinx)(C1,C2为任意常数)为某二阶常系数齐次线性微分方程的通解,则该方程为________。
已知三阶矩阵A的特征值为0,±1,则下列结论中不正确的是()
已知实二次型f(x1,x2,x3)=xTAx的矩阵A满足且ξ1=(1,2,1)T,ξ2=(1,一1,1)T是齐次线性方程组Ax=0的一个基础解系.(Ⅰ)用正交变换将二次型f化为标准形,写出所用的正交变换和所得的标准形;(Ⅱ)求出该二次型.
设A为3阶实对称矩阵,若存在正交矩阵Q,使得QTAQ=,又已知A的伴随矩阵A*有一个特征值为λ=1,相应的特征向量为α=(1,1,1)T.求正交矩阵Q
若f(x,y)与φ(x,y)均为可微函数,且φy’(x,y)≠0.已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是
在一个盒子中放有10个乒乓球,其中8个是新球,2个是用过的球.在第一次比赛时,从该盒子中任取2个乒乓球,比赛后仍放回盒子中.在第二次比赛时从这个盒子中任取3个乒乓球,则第二次取出的都是新球的概率为___________.
随机试题
营造对于()相当于烘托对于()
双击Word窗口的标题区时,会产生的效果是使_______。
5个月女婴,发热3天,体温39℃。查体:一般情况良好,咽充血,耳后淋巴结肿大,心肺无异常,肝脾未触及。若患儿热退后,伴皮疹出现,可能的诊断是
组成药物中不含附子的方剂是()组成药物中不含甘草的方剂是()
县级以上地方人民政府有关部门为就业困难人员安排的给予岗位补贴和社会保险补贴的公益性岗位,其劳动合同不适用劳动合同法有关()的规定。
确定常数a,使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(﹣2,a,4)T,β3=(﹣2,a,a)T线性表示,但向量组β1,β2,β3不能由α1,α2,α3线性表示.
类A是类B的友元,类B是类C的友元,则下列说法正确的是
以下可以将变量A、B值互换的是( )。
Inthelongrunagovernmentwillalwaysencroachuponfreedomtotheextenttowhichithasthepowertodoso.Thisisalmost
A.sothatB.preferenceC.normalD.circleE.callsforF.problemG.longer
最新回复
(
0
)