首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,x3)=xTAx在正交变换x=Oy下的标准形为y12+y22,且Q的第3列为 求矩阵A;
已知二次型f(x1,x2,x3)=xTAx在正交变换x=Oy下的标准形为y12+y22,且Q的第3列为 求矩阵A;
admin
2016-01-11
48
问题
已知二次型f(x
1
,x
2
,x
3
)=x
T
Ax在正交变换x=Oy下的标准形为y
1
2
+y
2
2
,且Q的第3列为
求矩阵A;
选项
答案
由题设知A的特征值为1,1,0. 且α=(1,0,1)
T
是属于A的特征值0对应的一个特征向量.设x=(x
1
,x
2
,x
3
)
T
为A的属于特征值1的特征向量,由于A的不同的特征值所对应的特征向量正交,所以有(x,α)=0,即x
1
+x
3
=0,解该方程组的基础解系ξ
1
=(1,0,一1)
T
,ξ
2
=(0,1,0)
T
,将其单位化,并将其取为A的属于特征值1对应的正交单位的特征向量, [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/3v34777K
0
考研数学二
相关试题推荐
设有方程组AX=0与BX=0,其中A,B都是m×n阶矩阵,下列四个命题:(1)若AX=0的解都是BX=0的解,则r(A)≥r(B)(2)若r(A)≥r(B),则AX=0的解都是BX=0的解(3)若AX=0与BX=0同解,则r(
设A为三阶方阵,A的每行元素之和为5,AX=0的通解为k1求Aβ.
设A是三阶矩阵,α1,α2,α3为3个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.(1)求矩阵A的特征值;(2)判断矩阵A可否对角化.
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=-ξ1+2ξ2+2ξ3,Aξ2=2ξ1-ξ2-2ξ3,Aξ3=2ξ1-2ξ1-2ξ2-ξ3,(1)求矩阵A的全部特征值;(2)求|A*+2E|.
设齐次线性方程组时XTAX的最大值.
设f(x)为连续函数,且ex[1+x+f(x)]存在,则曲线y=f(x)有斜渐近线()
设f(x)在[0,t](t>0)上有n阶导数且非负,已知f(0)=f’+(0)=f”+(0)=…=f+(n-2)(0)=0,f(n)(x)>0.(I)求F(t)=∫0tsf(x)dx-t∫0tf(x)dx(n为大于1的正整数)的n阶导数;(Ⅱ)证明:(
设A为3阶实对称矩阵,β=(3,3,3)T,方程组Ax=β的通解为k1(-1,2,-1)T+k2(0,-1,1)T+(1,1,1)T(k1,k2为任意常数).求正交矩阵Q,使得Q-1AQ=A.
设X为随机变量,E(X)=μ,D(X)=σ2,则对任意常数C有().
设当x→0时,是等价的无穷小,则常数a=__________.
随机试题
简述20世纪30年代报告文学的兴盛。
患者男性,主诉上腹痛。六个月前出现上腹疼痛,近日疼痛加重,无发热,无体重下降,二便正常。详问病史,诉疼痛以空腹为多,进食后减轻拟诊为___________;
慢性肾功能衰竭脾阳亏虚型治宜
A.氯吡格雷B.呋塞米C.阿司匹林D.低分子肝素E.尿激酶急性右心室非ST段抬高心肌梗死不宜选用()
下列哪些犯罪属于一般主体的犯罪?()
道路交通、火灾和水上交事故在()d内死亡,按死亡事故报告统计。
输入动植物、动植物产品和其他检疫物,经检疫不合格的,由口岸动植物检疫机关签发《检疫处理通知单》。( )
下列各句中,没有语病的一句是()。
【2013年河南省第33题】某科室共有8人,现在需要抽出两个2人的小组到不同的下级单位检查工作,问共有多少种不同的安排方案?
古希腊数学家、哲学家毕达哥拉斯说:“不能制约自己的人,不能称之为自由的人。”请你根据自己对这句话的体会,自拟题目,写一篇不少于800字的论说文。(要求:观点突出,结构合理,思路清楚,逻辑性强,无语病)
最新回复
(
0
)