首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
自考
设η为非齐次线性方程组Ax=b的一个解,ξ1,ξ2,…,ξr,是其导出组Ax=0的一个基础解系,证明η,ξ1,ξ2,…,ξr,线性无关.
设η为非齐次线性方程组Ax=b的一个解,ξ1,ξ2,…,ξr,是其导出组Ax=0的一个基础解系,证明η,ξ1,ξ2,…,ξr,线性无关.
admin
2014-10-27
43
问题
设η为非齐次线性方程组Ax=b的一个解,ξ
1
,ξ
2
,…,ξ
r
,是其导出组Ax=0的一个基础解系,证明η,ξ
1
,ξ
2
,…,ξ
r
,线性无关.
选项
答案
证一:因为ξ
1
,ξ
2
,…,ξ
r
,是Ax=0的基础解系.所以ξ
1
,ξ
2
,…,ξ
r
,线性无关,若η,ξ
1
,ξ
2
,…,ξ
r
,线性无关,则η必可由ξ
1
,ξ
2
,…,ξ
r
,线性表出,从而η为Ax=0的解,这与叩为Ax=b的解矛盾,故η,ξ
1
,ξ
2
,…,ξ
r
,线性无关; 证二(反正法):若η,ξ
1
,ξ
2
,…,ξ
r
,线性相关,则存在不全为零的数l,k
1
,k
2
,…,k
r
使lη+k
1
ξ
1
+k
2
ξ
2
+…+k
r
ξ
r
=0.若l≠0,则 [*] 即η可以由ξ
1
,ξ
2
,……ξ
r
线性表出,由此可得η为Ax=0的解,与已知矛盾,故l=0.从而k
1
,k
2
,…,k
r
不全为零,使k
1
ξ
1
+k
2
ξ
2
+……k
r
ξ
r
=0,这表明ξ
1
,ξ
2
,……ξ
r
线性相关,与ξ
1
,ξ
2
,……ξ
r
为Ax=0的基础解系矛盾.所以η,ξ
1
,ξ
2
,……ξ
r
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/3vyR777K
本试题收录于:
线性代数(经管类)题库公共课分类
0
线性代数(经管类)
公共课
相关试题推荐
OppositionleaderswillbewatchingcarefullytoseehowthePrimeMinister______thecrisis.
特征,特色n.f______
下列的线状图表显示了从1990年至1999年四个欧洲国家车辆被盗的情况。请分析报道其相关主要数据特征,有必要时可能需要比较数据间的区别,总结图表的信息,以ComparisonofCarTheft为题,写一篇150词左右的英语短文。
拒绝使君“共载”所表现的罗敷性格特征是
到了大喜的日子,果然没有任何一条红百裥裙出现。不穿大红百裥裙,固然没有身份的区别了,但是,穿了呢?不就有区别了吗?她就是要这一点点的区别呀!一条绣花大红百裥裙的分量,可比旗袍重多了,旗袍人人可以穿,大红百裥裙可不是的呀!她多少年就梦想着,有一天穿上一条绣着
阅读下面一段文字,回答问题:井蛙不可以语于海者,拘于虚也;夏虫不可以语于冰者,笃于时也;曲士不可以语于道者,束于教也。——选自《秋水》A.概括这段文字的主旨和三个
《五代史伶官传序》引用《尚书》中“满招损,谦得益”的名言证明后唐庄宗是因骄傲而亡国的道理,所用的论证方法是
设3阶矩阵A的一个特征值为一3,则一A2必有一个特征值为()
已知行列式则=__________.
设二次型f(x1,x2,x3)=x12+x22+x32+2ax1x2+2x1x3+2bx2x3经过正交变换x=Py化成f=y22+2y32,其中x=(x1,x2,x3)T,y=(y1,y2,y3)T是三维列向量,P是三阶正交矩阵,求常数a,b的值.
随机试题
教育的相对独立性的主要表现有哪些?
为进一步诊断应行上述患者的下步治疗应为
对于只由一个运算符或者多个优先级次相同的运算符(如既有加号又有减号)构成的公式,Excel将按照从左到右的顺序自动进行智能运算。()
根据以下资料回答下列题:某地财政部门在会计执法检查中,发现一些企业的下列事项:(1)入账的原始凭证没有审核人的签或盖章;(2)部分采购发票没有开具单位的盖章;(3)为逃避检查,有少数单位将一些会计资料进行了销
如图10所示是某计算机的窗口界面,下列说法错误的是()。
不得让不满()周岁的未成年人脱离监护单独居住。
以下哪些主体享有立法提案权()
AccordingtoaleadingGermanbanker,theU.S.dollaris"themostfrequentlydiscussedeconomicphenomenonofourtimes."He
AKeepingGoodRelationswithLocalBusinessmenBServiceProvidedbyLocalNewspapersCLargeCirculationoftheNationalNe
Smogissomethingcombinedbysmokeandfog.Londonisalwaysknownforits"blackfogs".Inthewinterof1952,amilkywhitef
最新回复
(
0
)