首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=一2为A的一个特征值,其对应的特征向量为α3,下列向量中是A的特征向量的是( ).
设A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=一2为A的一个特征值,其对应的特征向量为α3,下列向量中是A的特征向量的是( ).
admin
2015-06-29
47
问题
设A为三阶矩阵,方程组AX=0的基础解系为α
1
,α
2
,又λ=一2为A的一个特征值,其对应的特征向量为α
3
,下列向量中是A的特征向量的是( ).
选项
A、α
1
+α
3
B、3α
3
一α
1
C、α
1
+2α
2
+3α
3
D、2α
1
-3α
2
答案
D
解析
因为AX=0有非零解,所以,r(A)<n,故0为矩阵A的特征值,α
1
,α
2
为特征值0所对应的线性无关的特征向量,显然特征值0为二重特征值,若α
1
+α
3
为属于特征值λ
0
的特征向量,则有A(α
1
+α
3
)=λ
0
(α
1
+α
3
),注意到
A(α
1
+α
3
)=Oα
1
一2α
3
=一2α
3
,故一2α
3
=λ
0
(α
1
+α
3
)或λ
0
α
1
+(λ
0
+2)α
3
=0,
因为α
1
,α
3
线性无关,所以有λ
0
=0,λ
0
+2=0,矛盾,故α
1
+α
3
不是特征向量,同理可证3α
3
一α
1
及α
1
+2α
2
+3α
3
也不是特征向量,显然2α
1
一3α
2
为特征值0对应的特征向量,选(D).
转载请注明原文地址:https://kaotiyun.com/show/4454777K
0
考研数学一
相关试题推荐
设A为可逆矩阵,则[(A-1)T]-1=().
设a0,a1,…,an-1是n个实数,方阵若λ是A的特征值,证明ξ=[1,λ,λ2,…,λn-1]T是A的对应于特征值λ的特征向量;
设A为3阶矩阵,α1,α2,α3为线性无关的三维列向量,且满足Aα1=1/2α1+2/3α2+α3,Aα2=2/3α2+1/2α3,Aα3=-1/6α3.求矩阵B,使得A[α1,α2,α3]=[α1,α2,α3]B;
设问A,B是否相似,并说明理由.
设A=E+αβT,其中α=[α1,α2,…,αn]T≠0,β=[b1,b2,…,bn]T≠0,且αTβ=2.求可逆矩阵P,使得P-1AP=A.
求的特征值、特征向量,判断A能否相似对角化,若能对角化,则求出可逆矩阵P,使得P-1AP为对角矩阵.
设矩阵有三个线性无关的特征向量,求满足条件的x,y.
已知n阶方阵A满足矩阵方程A2-3A-2E=0.证明A可逆,并求出其逆矩阵A-1.
设线性方程组添加一个方程ax1+2x2+bx3-5x1=4=0后,成为方程组a,b满足什么条件时,方程组(*),(**)是同解方程组.
设线性方程组添加一个方程ax1+2x2+bx3-5x1=4=0后,成为方程组求方程组(*)的通解;
随机试题
a<5成立。(1)点A(a,6)到直线3x一4y=2的距离大于4;(2)两条平行线l1:x一y—a=0和l2:x一y一3=0的距离小于。
《我愿是一条急流》中用比喻手法抒情的具体表现。
胫骨移植常采用骨-骨膜移植,这是因为
银屑病关节炎的临床表现有
女,55岁。右上腹痛阵发性加重,伴寒战和皮肤、巩膜黄染2天来诊。查体:T40℃,P120次/分,R23次/分,血压80/60mmHg。躁动、谵妄,右上腹肌紧张,压痛并反跳痛,可触及肿大的胆囊,触痛,肝区叩痛。白细胞计数25×109/L,血小板计数20×1
当事人对合同质量约定不明确的,()。
风险偏好指标选取需要体现()。
()是指新建房屋申请人。或原有但未进行过登记的房屋申请人原始取得所有权而进行的登记。
教师专业需要某些特殊能力,其中最重要的能力是()。
Thecountry’sinadequatementalhealthsystemgetsthemostattentionafterinstancesofmassviolencethatthenationhasseen
最新回复
(
0
)