首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4线性无关,β1=2α1+α3+α4,β2=2α1+α3+α4,β3=α2-α4,β4=α3+α4,β5=α2+α3. (1)求r(β1,β2,β3,β4,β5); (2)求β1,β2,β3,β4,β5的一个最大无关组
设α1,α2,α3,α4线性无关,β1=2α1+α3+α4,β2=2α1+α3+α4,β3=α2-α4,β4=α3+α4,β5=α2+α3. (1)求r(β1,β2,β3,β4,β5); (2)求β1,β2,β3,β4,β5的一个最大无关组
admin
2019-06-28
44
问题
设α
1
,α
2
,α
3
,α
4
线性无关,β
1
=2α
1
+α
3
+α
4
,β
2
=2α
1
+α
3
+α
4
,β
3
=α
2
-α
4
,β
4
=α
3
+α
4
,β
5
=α
2
+α
3
.
(1)求r(β
1
,β
2
,β
3
,β
4
,β
5
);
(2)求β
1
,β
2
,β
3
,β
4
,β
5
的一个最大无关组.
选项
答案
(1)β
1
,β
2
,β
3
,β
4
,β
5
对α
1
,α
2
,α
3
,α
4
的表示矩阵为 [*] 用初等行变换化为阶梯形矩阵: [*] 则r(β
1
,β
2
,β
3
,β
4
,β
5
)=r(C)=3. (2)记C的列向量组为γ
1
,γ
2
,γ
3
,γ
4
,γ
5
.则由(1)的计算结果知γ
1
,γ
2
,γ
4
是线性无关的.又 (β
1
,β
2
,β
4
)=(α
1
,α
2
,α
3
,α
4
)(γ
1
,γ
2
,γ
4
) 得到r(β
1
,β
2
,β
4
)=r(γ
1
,γ
2
,γ
4
)=3, β
1
,β
2
,β
4
线性无关,是β
1
,β
2
,β
3
,β
4
,β
5
的一个最大无关组.
解析
转载请注明原文地址:https://kaotiyun.com/show/44V4777K
0
考研数学二
相关试题推荐
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=∫0πf(x)cosxdx=0。试证明在(0,π)内至少存在两个不同的点ξ1,ξ2,使(ξ1)=f(ξ2)=0。
设A是三阶方阵,α1,α2,α3是三维线性无关的列向量组,且Aα1=α2+α3,Aα2=α3+α1,Aα3=α1+α2。求A的全部特征值;
已知三阶矩阵A与三维非零列向量α,若向量组α,Aα,A2α线性无关,而A3α=3Aα一2A2α,那么矩阵A属于特征值λ=一3的特征向量是()
与α1=(1,2,3,一1)T,α2=(0,0,1,2)T,α3=(2,1,3,0)T都正交的单位向量是__________.
设f(χ,y)是定义在区域0≤χ≤1,0≤y≤1上的二元连续函数,f(0,0)=-1,求极限=________.
将长为2m的铁丝分成三段,依次围成圆、正方形与正三角形,三个图形的面积之和是否存在最小值?若存在,求出最小值.
设实对称矩阵,求可逆矩阵P,使P-1AP为对角形矩阵,并计算行列式|A—E|的值.
设f(χ)=∫0tanχarctant2dt,g(χ)=χ→sinχ,当χ→0时,比较这两个无穷小的关系.
[2005年]如图1.3.5.2所示,c1和c2分别是y=(1+ex)/2和y=ex的图形,过点(0,1)的曲线c3是一单调增函数的图形,过c2上任一点M(x,y)分别作垂直于x轴和y轴的直线lx和ly.记c1,c2与lx所围图形的面积为S1(x);c
设f(t)=arctan(1+x2+y2)dxdy,则为().
随机试题
在聚乙烯防腐中,胶粘剂的涂敷厚度为()。
下列哪些情况是支气管镜检查的适应证
男性,60岁,脑出血后昏迷1年,眼睑不能闭合。近期反复出现咳嗽、痰液多。患者痰液多、咳嗽的护理,不恰当的是
A.生成障碍B.破坏或消耗过多C.分布紊乱D.释放障碍E.生成旺盛病毒、细菌感染对粒细胞的影响是
根据新《商检法》规定,当事人对商检机构、国家商检部门作出的复验结论不服的,不能申请行政复议。( )
甲公司2016年1月3日取得当地财政局划拨的2016年第一季度财政贴息52万元,则甲公司下列会计处理表述正确的是()。
关于志愿者与社会工作者的说法,正确的是()。
在CPU的状态寄存器中,若符号标志为“1”,表示运算结果是()。
设(X,Y)为二维随机变量,则下列结论正确的是()
Theirissuanceforpsychologistswillimpactnotonlyontheroleofcurrentpractitioners,butonthetrainingandjustifyingo
最新回复
(
0
)