首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设某种电子器件的寿命(以小时计)T服从参数为λ的指数分布,其中λ>0未知.从这批器件中任取n只在时刻t=0时投入独立寿命试验,试验进行到预订时间T0结束,此时有k(0<k<n)只器件失效. (Ⅰ)求一只器件在时间T0未失效的概率; (Ⅱ)求λ的最大似然估计
设某种电子器件的寿命(以小时计)T服从参数为λ的指数分布,其中λ>0未知.从这批器件中任取n只在时刻t=0时投入独立寿命试验,试验进行到预订时间T0结束,此时有k(0<k<n)只器件失效. (Ⅰ)求一只器件在时间T0未失效的概率; (Ⅱ)求λ的最大似然估计
admin
2019-06-04
29
问题
设某种电子器件的寿命(以小时计)T服从参数为λ的指数分布,其中λ>0未知.从这批器件中任取n只在时刻t=0时投入独立寿命试验,试验进行到预订时间T
0
结束,此时有k(0<k<n)只器件失效.
(Ⅰ)求一只器件在时间T
0
未失效的概率;
(Ⅱ)求λ的最大似然估计值.
选项
答案
(Ⅰ)记T的分布函数为F(t), [*] 一只器件在t=0时投入试验,则在时间T
0
以前失效的概率为P{T≤T
0
}=F(T
0
)=1-e
-λT0
,在时间T
-1
未失效的概率为 P{T>T
-1
}=1一F(T
-1
)=e
-λT0
. (Ⅱ)考虑事件A={试验直至时间T
0
为止,有K只器件失效,而有N-K只未失效}的概率. 由于各只器件的试验是相互独立的,因此事件A的概率为 L(λ)=C
n
k
(1-e
-λT0
)
k
(e
-λT0
)
n-k
,这就是所求的似然函数.取对数得 lnL(λ)一1nC
n
k
+kln(1一e
-λT0
)+(n-k)(一λT
0
). 令[*] 解得A的最大似然估计值为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/4Lc4777K
0
考研数学一
相关试题推荐
设矩阵B=,已知矩阵A相似于B,则秩(A一2E)与秩(A—E)之和等于
已知方程组无解,则a=___________.
已知二次型f(x1,x2,x3)=(1一a)x12+(1一a)x22+2x32+2(1+a)1x2的秩为2.(Ⅰ
设A为n阶实对称矩阵,秩(A)=n,An是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n).二次型f(x1,x2,…,xn)=xixj.记X=(x1,x2,…,xn)T.把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(X
在长为a的线段AB上独立、随机地取两点C,D,试求CD的平均长度.
设(X,Y)服从G={(x,y)|x2+y2≤1}上的均匀分布,试求给定Y=y的条件下X的条件概率密度fX|Y(x|y).
向半径为r的圆内随机抛一点,求此点到圆心的距离X的分布函数F(x),并求
设X1,X2,…,Xn为来自总体X的简单随机样本,且X的概率分布为其中0<θ<1.分别以v1,v2表示X1,X2,…,Xn中1,2出现的次数,试求:当样本值为1,1,2,1,3,2时的最大似然估计值和矩估计值.
某彩票每周开奖一次,每次提供十万分之一的中奖机会,且各周开奖是相互独立的.某彩民每周买一次彩票,坚持十年(每年52周),那么他从未中奖的可能性是多少?
设a1,a1,…,an-1是n个实数,方阵若A有n个互异的特征值λ1,λ2,…,λn求可逆矩阵P,使P-1AP=A.
随机试题
眼的调节反应包括:_________,_________,_________。
以下有关建筑机械安全要求的说法正确的是()。
在空气净化设备中,喷淋塔的优点是()。
下列对账工作,属于企业账账核对的有()。
诱因
解析器是在()负责查询域名服务器时,解释域名服务器的应答,并将查询到的有关信息返回请求的程序或用户。
语句Print4+5\6*7/8Mod9的值是______。
为了使标签Label1透明且不具有边框,以下正确的属性设置是
ThedoctorinsistedthatPaul’smother______examinedthoroughly.
Forthispart,youareallowed30minutestowriteacompositiononthetopicTheAgingProblemInChina.Youshouldwriteatl
最新回复
(
0
)