首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1,a2,…,an是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
设a1,a2,…,an是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
admin
2019-01-19
72
问题
设a
1
,a
2
,…,a
n
是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
选项
答案
必要性:a
1
,a
2
,…,a
n
是线性无关的一组n维向量,因此r(a
1
,a
2
,…,a
n
)=n。对任一n维向 量b,因为a
1
,a
2
,…,a
n
,b的维数n小于向量的个数n+1,故a
1
,a
2
,…,a
n
,b线性相关。 综上所述r(a
1
,a
2
,…,a
n
,b)=n。 又因为a
1
,a
2
,…,a
n
线性无关,所以n维向量b可由a
1
,a
2
,…,a
n
线性表示。 充分性:已知任一n维向量b都可由a
1
,a
2
,…,a
n
线性表示,则单位向量组:ε
1
,ε
2
,…,ε
n
可由 a
1
,a
2
,…,a
n
线性表示,即 r(ε
1
,ε
2
,…,ε
n
)=n≤r(a
1
,a
2
,…,a
n
), 又a
1
,a
2
,…,a
n
是一组n维向量,有r(a
1
,a
2
,…,a
n
)≤n。 综上,r(a
1
,a
2
,…,a
n
)=n。所以a
1
,a
2
,…,a
n
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/4bP4777K
0
考研数学三
相关试题推荐
(04年)二次型f(χ1,χ2,χ3)=(χ1+χ2)2+(χ2-χ3)2+(χ3+χ1)2的秩为_______.
(12年)设函数f(χ)=(eχ-1)(e2χ-2)…(enχ-n),其中n为正整数,则f′(0)=【】
(05年)设二维随机变量(X,Y)的概率分布为若随机事件{X=0}与{X+Y=1}相互独立,则a=_______,b=_______.
利用中心极限定理证明:
设某种元件的寿命为随机变量且服从指数分布.这种元件可用两种方法制得,所得元件的平均寿命分别为100和150(小时),而成本分别为C和2C元.如果制造的元件寿命不超过200小时,则须进行加工,费用为100元.为使平均费用较低,问C取何值时,用第2种方法较好?
设矩阵A、B的行数都是m,证明:矩阵方程AX=B有解的充分必要条件是r(A)=r(AB).
某种产品的次品率为0.1,检验员每天独立地检验6次,每次有放回地取10件产品进行检验,若发现其中有次品,则作一次记录(否则不记录).设X为一天中作记录的次数,写出X的分布列.
设f(x)在[0,1]上连续,在(0,1)内可微,且f(x)dx=f(0),试证:存在点ξ∈(0,1),使得f’(ξ)=0.
设则在点x=1处函数f(x)
计算D2n=,其中未写出的元素都是0。
随机试题
小细胞低色素性贫血除可见于缺铁性贫血外,还可见于
A.京械注准×××××××××××B.国械注准×××××××××××C.国械注许×××××××××××D.国械备×××××××××××从证书号格式判断,属于从中国香港、澳门、台湾地区进口的第三类医疗器械的是
检验检疫机构对涉及人身财产安全、健康的出口商品实施注册登记管理,未获得注册登记的不得出口。()
某公司向银行借入12000元,借款期为3年,每年的还本付息额为4600元,则借款利率为( )。
下列风险中,注册会计师能够控制的是()。
与其他金融机构相比,商业银行最明显的特征是()。
设y=f(lnx)ef(x),其中f(x)为可微函数,求dy.
()是不断对网络服务系统进行干扰,改变其正常的作业流程,执行无关程序使系统响应减慢甚至瘫痪。
增强民族团结
Keepingafullsocialcalendarmayhelpprotectyoufromdementia(痴呆症),researcherssaidonMonday.【C1】______activepeople
最新回复
(
0
)