设n阶矩阵A的伴随矩阵A*≠O,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系( )

admin2021-01-25  48

问题 设n阶矩阵A的伴随矩阵A*≠O,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系(    )

选项 A、不存在.
B、仅含一个非零解向量.
C、含有两个线性无关的解向量.
D、含有三个线性无关的解向量.

答案B

解析 由A*≠O知A*至少有一个元素Aij=(-1)ijMij≠0,故A的余子式Mij≠0.而Mij为A的n-1阶子式,故r(A)≥n-1,又由Ax=b有解且不唯一知r(A)<n,故r(A)=n-1,因此,Ax=0的基础解系所含向量个数为n-r(A)=n-(n-1)=1,只有B正确.
转载请注明原文地址:https://kaotiyun.com/show/4kx4777K
0

最新回复(0)