首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[0,1]上二阶可导,且|f(χ)|≤a,|f〞(χ)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点. (1)写出f(χ)在χ=c处带拉格朗日型余项的一阶泰勒公式; (2)证明:|f′(c)|≤2a+.
设f(χ)在[0,1]上二阶可导,且|f(χ)|≤a,|f〞(χ)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点. (1)写出f(χ)在χ=c处带拉格朗日型余项的一阶泰勒公式; (2)证明:|f′(c)|≤2a+.
admin
2020-03-16
53
问题
设f(χ)在[0,1]上二阶可导,且|f(χ)|≤a,|f〞(χ)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.
(1)写出f(χ)在χ=c处带拉格朗日型余项的一阶泰勒公式;
(2)证明:|f′(c)|≤2a+
.
选项
答案
(1)f(χ)=f(c)+f′(c)(χ-c)+[*](χ-c)
2
,其中ξ介于c与χ之间. (2)分别令χ=0,χ=1,得 f(0)=f(c)-f′(c)c+[*]c
2
(0,c) f(1)=f(c)+f′(c)(1-c)+[*](1-c)
2
,ξ
2
∈(c,1), 两式相减,得f′(c)=f(1)-f(0)+[*](1-c)
2
,利用已知条件,得 |f′(c)|≤2a+[*][c
2
+(1-c)
2
], 因为c
2
+(1-c)
2
≤1,所以|f′(c)|≤2a+[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/4o84777K
0
考研数学二
相关试题推荐
求极限:
设曲线y=a(a>0)与曲线y=lnχ在点(χ0,y0)处有公共的切线,求:(1)常数a及切点坐标;(2)两曲线与χ轴所围成的平面图形绕χ轴旋转所得旋转体的体积.
设4阶矩阵A满足A3=A.(1)证明A的特征值不能为0,1,和-1以外的数.(2)如果A还满足|A+2E|=8,确定A的特征值.
设n元线性方程组Ax=b,其中当a为何值时,该方程组有唯一解,并求x1;
求极限:
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n-1)αn-1=0,b=α1+α2,…+αn.求方程组AX=b的通解.
已知A,B是3阶方阵,A≠O,AB=O,证明:B不可逆.
[2016年]设D是由直线y=l,y=x,y=一x围成的有界区域,计算二重积分dxdy.
设A是一个可逆实对称矩阵,记Aij是它的代数余子式.二次型f(χ1,χ2,…,χn)=χiχj.(1)用矩阵乘积的形式写出此二次型.(2)f(χ1,χ2,…,χn)的规范形和XTAX的规范形是否相同?为什么?
设函数f(x)=并记F(x)=∫0xf(t)dt(0≤x≤2),试求F(x)及f(x)dx.
随机试题
提托穴的定位是()。
患者,女性,39岁,近半年来,每于感染或劳累后出现劳力性呼吸困难,并逐渐加重,休息后也不易缓解,一周前受凉后出现呼吸困难,伴咳嗽,咳大量泡沫样痰,夜间不能平卧,以“慢性心功能不全,二尖瓣狭窄”收入院。患者既往曾有反复链球菌性咽炎史。该患者心脏瓣膜病最可
月经周期的长短取决于下列何项因素
具有抗尿崩症作用的药物是
基金收益扣除按照国家规定可以扣除的费用等项目后的余额称为()。
某市区酒厂为增值税一般纳税人,2019年10月发生如下经济业务:(1)向某商场销售自产粮食白酒15吨,每吨不含税单价为80000元,收取包装物押金174000元,收取品牌使用费18100元。(2)从云南某酒厂购进粮食白酒6吨,专用发票上注明每吨不含税进
【2014广西】研究性学习既是一门课程,又是一种学习方式。()
LSAT
Inadditiontourgetoconformwhichwegenerateourselves,thereistheexternalpressureofthevariousformalandinformalgr
Itisnotpolitetoarriveatadinnerpartymorethan15to20minuteslate.Thehostorhostessusuallywaitsforallthegues
最新回复
(
0
)