首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶方阵,E+A可逆,记f(A)=(E-A)(E+A)-1,证明: (E+f(A))(E+A)=2E.
设A是n阶方阵,E+A可逆,记f(A)=(E-A)(E+A)-1,证明: (E+f(A))(E+A)=2E.
admin
2017-06-14
47
问题
设A是n阶方阵,E+A可逆,记f(A)=(E-A)(E+A)
-1
,证明:
(E+f(A))(E+A)=2E.
选项
答案
(E+f(A))(E+A)=[E+(E-A)(E+A)
-1
](E+A) =E+A+E—A=2E.
解析
转载请注明原文地址:https://kaotiyun.com/show/4pu4777K
0
考研数学一
相关试题推荐
设对(I)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵.若(1,0,1,0)T是方程组Ax=0的一一个基础解系,则A*x=0的基础解系可为
设向量α=(α1,α2,…,αn)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.矩阵A的特征值和特征向量.
设α=(1,1,1)T,β=(1,0,k)T,若矩阵αβT相似于,则k=__________.
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记α=,β=证明二次型,对应的矩阵为2ααT+ββT;
设奇函数f(x)在[-1,1]上具有2个阶导数,且f(x)=1。证明:存在η∈(-1,1),使得f"(η)+f’(η)=1.
如果0<β<α<π/2,证明
随机试题
下列关于信用货币的说法中,正确的有()。
Toknowwhatisgoodand________aretwodifferentthings.
球囊的适宜刺激是()
下列关于颜面播散性粟粒性狼疮的叙述,错误的是
用“心理学标准”判断正常心理与异常心理的原则,包括()。
在土地承包经营期限内,对个别承包经营者之间承包的土地进行适当调整的,必须经村民会议()以上成员或者()以上村民代表的同意,并报乡(镇)人民政府和县级人民政府农业行政主管部门批准。
全口义齿合适的磨光面可以()。
试述运动技术训练的基本要求。
判断级数的敛散性。
Therisingfloodwaterswillsoon______thevillage.
最新回复
(
0
)