首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2014年] 设α1,α2,α3是三维向量,则对任意常数k,l,向量α1+kα3,α2+α3线性无关是向量α1,α2,α3线性无关的( ).
[2014年] 设α1,α2,α3是三维向量,则对任意常数k,l,向量α1+kα3,α2+α3线性无关是向量α1,α2,α3线性无关的( ).
admin
2021-01-25
47
问题
[2014年] 设α
1
,α
2
,α
3
是三维向量,则对任意常数k,l,向量α
1
+kα
3
,α
2
+α
3
线性无关是向量α
1
,α
2
,α
3
线性无关的( ).
选项
A、必要非充分条件
B、充分非必要条件
C、充分必要条件
D、既非充分也非必要条件
答案
A
解析
记β
1
=α
1
+kα
3
,β
2
=α
2
+lα
3
,则
若α
1
,α
2
,α
3
线性无关,则[α
1
,α
2
,α
3
]为可逆矩阵,故秩
即β
1
=α
1
+kα
3
,β
2
=α
2
+lα
3
线性无关.
反之,设α
1
,α
2
线性无关,α
3
=0,则对任意常数k,l必有α
1
+kα
3
,α
2
+lα
3
线性无关,但α
1
,α
2
,α
3
线性相关,故α
1
+kα
3
,α
2
+lα
3
线性无关是向量组α
1
,α
2
,α
3
线性无关的必要但非充分条件.仅(A)入选.
转载请注明原文地址:https://kaotiyun.com/show/4wx4777K
0
考研数学三
相关试题推荐
甲袋中有4个白球和6个黑球,乙袋中有5个白球和5个黑球,今从甲袋中任取2个球,从乙袋中任取一个球放在一起,再从这3个球中任取一球,求最后取到白球的概率.
[2005年]设二维随机变量(X,Y)的概率密度为求(X,Y)的边缘概率密度fX(x),fY(y);
(94年)设函数y=y(χ)满足条件,求广义积分∫0+∞y(χ)dχ.
(2008年)设z=z(x,y)是由方程x2+y2一z=φ(x+y+z)所确定的函数,其中φ具有2阶导数且φ’≠一1。(I)求dz;(Ⅱ)记u(x,y)=
设矩阵A、B满足关系式AB=A+2B,其中,求矩阵B.
[2003年]已知齐次线性方程组其中试讨论a1,a2,…,an和b满足何种关系时,(1)方程组仅有零解;(2)方程组有非零解.在有非零解时,求此方程组的一个基础解系.
(1999年)设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,试证:(I)存在,使f(η)=η;(Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)一λ[f(ξ)一ξ]=1。
(89年)假设函数f(χ)在[a,b]上连续.在(a,b)内可导,且f′(χ)≤0.记F(χ)=证明在(a,b)内F′(χ)≤0.
任意3维向量都可用α1=(1,0,1)T,α2=(1,-2,3)T,α3=(a,1,2)T线性表出,则a=_______.
A=,其中a1,a2,a3,a4两两不等,下列命题正确的是().
随机试题
社会学研究的一般程序包括【】
我国自2004年3月1日起实施的《商业银行资本充足率管理办法》,规定了四级资产风险权重系数,分别是()。
______是智慧的最高表现,因而从逻辑学中引进______的概念作为划分智慧阶段的依据。
孟禄认为“全部教育都归之于儿童对成人的无意识模仿”,这种观点是教育起源论中的()。
生理自我基本成熟的时间在()
下列不得决定劳动教养的有()。
姻亲是指男女结婚后,配偶之一和另一方的亲属之间形成的亲属关系。根据上述定义,下列不属于姻亲的是:
Clerk:Wouldyousigntheregister,please?Mr.Woods:Sure.______,doesmyroomhaveaprivatebath?Clerk:Certainly.Everyr
法律的教育作用的实现方式主要有()
Instarkcontrasttohislater(i)______,Simpsonwaslargely(ii)______politicsduringhiscollegeyears,despitethefactthat
最新回复
(
0
)