首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
给定矩阵 其行向量都是齐次线性方程组(Ⅰ): 的解向量.问:B的4个行向量是否构成方程组(Ⅰ)的基础解系?若不能,不用解方程组的方法.试求方程组(Ⅰ)的一个基础解系.
给定矩阵 其行向量都是齐次线性方程组(Ⅰ): 的解向量.问:B的4个行向量是否构成方程组(Ⅰ)的基础解系?若不能,不用解方程组的方法.试求方程组(Ⅰ)的一个基础解系.
admin
2020-04-21
84
问题
给定矩阵
其行向量都是齐次线性方程组(Ⅰ):
的解向量.问:B的4个行向量是否构成方程组(Ⅰ)的基础解系?若不能,不用解方程组的方法.试求方程组(Ⅰ)的一个基础解系.
选项
答案
先用观察法找出方程组(Ⅰ)所包含的独立方程的个数.这样易求出其系数矩阵A的秩(当然,也可用初等行变换求之).事实上,有 2×①+②=④, 3×①一②=③. 因而方程组(Ⅰ)中的方程①与②是独立方程组,其系数矩阵A的秩为2.又n=5,故方程组 (Ⅰ)的一个基础解系只含5—2=3个解向量.因而只需找出B中3个线性无关的行向量即可. 解 令B中的第1,2,4个行向量分别为 β
1
=[1,一2,1,0,0]
T
, β
2
=[1,一2,0,1,0]
T
, β
4
=[5,一6,0,0,1]
T
. 因[*],显然线性无关,在其相同位置上增加相同个数的分量(2个分量),即得到β
1
,β
2
,β
4
.它们仍然线性无关,于是它们可作为方程组(Ⅰ)的一个基础解系. 而B中第3个行向量 β
3
=[1,一2,3,一2,0]
T
=3β
1
一2β
2
+Oβ
4
即为β
1
,β
2
,β
4
的线性组合,故B中4个行向量不能组成方程组(Ⅰ)的基础解系. 事实上,方程组(Ⅰ)的一个基础解系只含3个解向量.当然这3个解向量不唯一.事实上,β
1
,β
3
,β
4
也是方程组(Ⅰ)的一个基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/5684777K
0
考研数学二
相关试题推荐
[20l1年]设向量组α1=[1,0,1]T,α2=[0,1,1]T,α3=[1,3,5]T不能由向量组β1=[1,l,1,]T,β2=[1,2,3]T,β3=[3,4,a]T线性表示.将β1,β2,β3用α1,α2,α3线性表示.
设向量组α1,α2,α3线性相关,向量组α2,α3,α4线性无关.问:α1能否由α2,α3线性表示?证明你的结论.
设有向量组α1=[1,一1,2,4],α2=[0,3,1,2],α3=[3,0,7,14],α4=[1,一1,2,0],α5=[2,1,5,10],则该向量组的极大无关组为().
设连续函数f(x)满足:[f(x)+xf(xt)]dt与x无关,求f(x).
求二元函数z=f(x,y)=x2y(4一x一y)在由直线x+y=6,x轴和y轴所围成的闭合区域D上的极值、最大值与最小值.
令f(χ)=χ-[χ],求极限
求极限:.
设φ(x)是以2π为周期的连续函数,且Φ’(x)=φ(x),Φ(0)=0.求方程y"+ysinx=φ(x)ecosx的通解;
设f(x)是区间[0,+∞)上单调减少且非负的连续函数,证明:数列{an}的极限存在.
随机试题
A.寒凉派B.滋阴派C.攻邪派D.补土派治病以汗吐下三法为主,为
肠易激综合征病人的腹泻多呈_______状,但绝无_______。
对猪致病性较强的球虫是()
多层小砌块房屋6度以下地震设防时的芯柱竖向插筋不应小于(),并贯通墙身与圈梁连接。
在审议公司和基金的审计事务、关联交易、高级管理人员的任免和薪酬、租用交易席位、聘用销售代理、托管或注册登记机构及相关费率、聘请或更换会计师事务所等事项时,必须取得基金管理公司()的独立董事同意。
金融中介可以分为交易中介和服务中介,下列属于交易中介的是()。
()是导游服务的灵魂。
以下人物及其成就说法不正确的是()。
一、注意事项1.本题本由给定资料与作答要求两部分组成。考试时间为150分钟。其中,阅读给定资料参考时限为40分钟,作答参考时限为110分钟。满分100分。2.请在题本、答题卡指定位置上用黑色字迹的钢笔或签字笔填写自己的姓名和准考证号,并
Isitapopularmajor?
最新回复
(
0
)