首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设微分方程xy’﹢2y=2(ex-1). (I)求上述微分方程的通解,并求使存在的那个解(将该解记为y0(x)),以及极限值; (Ⅱ)补充定义之后使y0(x)在x=0处连续,求y0’(x),并请证明:无论x=0还是x≠0,y0’(x)均连续.
设微分方程xy’﹢2y=2(ex-1). (I)求上述微分方程的通解,并求使存在的那个解(将该解记为y0(x)),以及极限值; (Ⅱ)补充定义之后使y0(x)在x=0处连续,求y0’(x),并请证明:无论x=0还是x≠0,y0’(x)均连续.
admin
2018-12-21
53
问题
设微分方程xy
’
﹢2y=2(e
x
-1).
(I)求上述微分方程的通解,并求使
存在的那个解(将该解记为y
0
(x)),以及极限值
;
(Ⅱ)补充定义之后使y
0
(x)在x=0处连续,求y
0
’
(x),并请证明:无论x=0还是x≠0,y
0
’
(x)均连续.
选项
答案
(I)当x≠0时,原方程化为[*] 由一阶线性微分方程的通解公式,得通解 [*] 其中C为任意常数. 由上述表达式可知,[*]y(x)存在的必要条件是 [*] (Ⅱ)[*] y
0
’
(x)在x=0处连续,又y
0
’
(x)在x≠0处也连续(初等函数),故无论x=0还是x≠0, [*] 均连续.
解析
转载请注明原文地址:https://kaotiyun.com/show/5Aj4777K
0
考研数学二
相关试题推荐
(2006年)设函数f(u)在(0,+∞)内具有二阶导数,且z=f()满足等式(Ⅰ)验证f〞(u)+=;(Ⅱ)若f(1)=0,f′(1)=1,求函数f(u)的表达式.
(2012年)=_______.
(2000年)设函数S(χ)=∫0χ|cost|dt(1)当n为正整数,且nπ≤χ<(n+1)π时,证明2n≤S(χ)<2(n+1).(2)求
(2008年)设函数y=y(χ)由参数方程确定,其中χ(t)是初值问题的解,求.
求函数f(x,y)=x2+2y2一x2y2在区域D={(x,y)|x2+y2≤4,y≥0)上的最大值与最小值.
设在区[e,e2]上,数p,q满足条件px+q≥lnx求使得积分I(p,q)=(px+q—lnx)dx取得最小值的p,q的值.
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表示式的系数全不为零,证明:α1,α2,…,αs,β中任意5个向量线性无关.
求y’’-2y’-ex=0满足初始条件y(0)=1,y’(0)=1的特解.
A=,已知r(A*)+r(A)=3,求a,b应该满足的关系.
[*]由于因此原式=eln2/2=
随机试题
Governmentsatalllevelsfaceatoughtaskinbettermanagingandservingmigrantpopulations.Themunicipalgovernmentof
交感性眼炎的诱因包括()
雌甾-1,3,5(10)-三烯3,17β-二醇的结构式是17β-羟基-19去甲-17α-孕甾-4-烯-20-炔-3-酮的结构式是
下列各项中,不应确认为财务费用的有()。
旅行社根据业务和发展的需要,可以设立()和旅行社服务网点等分支机构。
“一见钟情”这种现象属于___________。
如果这项改革措施不受干部们欢迎,我们就应该进行修改。如果它不受工人们欢迎,我们就应该采用一项新的改革措施。并且这项措施必定是,要么不受干部们的欢迎,要么不受工人们的欢迎。如果以上陈述为真,以下哪项也一定正确?
简述债务转移的概念和成立条件。
设f(x)有一个原函数则
WhenyouareinEngland,youmustrememberthat______.Thebesttitle(标题)wouldbe______.
最新回复
(
0
)