首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内可导,且f(A)=f(B)=2。证明存在ξ,η∈(a,b),使得f(η)+f'(η)=2eξ-η。
设f(x)在[a,b]上连续,在(a,b)内可导,且f(A)=f(B)=2。证明存在ξ,η∈(a,b),使得f(η)+f'(η)=2eξ-η。
admin
2019-01-25
81
问题
设f(x)在[a,b]上连续,在(a,b)内可导,且f(A)=f(B)=2。证明存在ξ,η∈(a,b),使得f(η)+f'(η)=2e
ξ-η
。
选项
答案
首先构造辅助函数g(x)=2e
x
,显然g(x)在[a,b]上连续,在(a,b)内可导,由拉格朗日中值定理,至少存在一点ξ∈(a,b),使得[*]。 另外,再构造辅助函数F(x)=e
x
f(x),F(x)在[a,b]上连续,在(a,b)内可导,由拉格朗日中值定理,至少存在一点η∈(a,b),使得[*],即 [*] 因此可得2e
ξ
=e
η
[f(η)f'(η)],即f(η)f'(η)=2e
ξ-η
。
解析
本题考查拉格朗日中值定理。由于题干中有两个中值ξ,η,因此一般会出现一个函数在两个区间上分别用中值定理或构造两个不同函数分别用中值定理。本题出现了f(x)和e的指数函数,因此需要构造两个函数分别使用中值定理。
转载请注明原文地址:https://kaotiyun.com/show/5hP4777K
0
考研数学三
相关试题推荐
求解微分方程.
设A是n阶实对称矩阵,证明:A可逆的充要条件是存在n阶实矩阵B,使得AB+BTA是正定阵.
已知非齐次线性方程组有3个线性无关的解.(1)证明:方程组的系数矩阵A的秩r(A)=2.(2)求a,b的值及方程组的通解.
设A是三阶实矩阵,λ1,λ2,λ3是A的三个不同的特征值,ξ1,ξ2,ξ3是三个对应的特征向量,证明:当λ2λ3≠0时,向量组ξ1,A(ξ1+ξ2),A2(ξ1+ξ2+ξ3)线性无关.
设函数f(x)在区间[a,b]上连续,且f(x)>0,证明:∫abf(x)dx.∫ab≥(b—a)2.
计算二重积分I=x[1+yf(x2+y2)]dxdy,其中积分区域D=((x,y)|y=x3,y=1,x=一1}.
设f’(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),f’(a)f’(b)>0,试证:至少存在一点ξ∈(a,b),使f"(ξ)=0.
设常数λ>0且级数收敛,则级数
设幂级数anχn的收敛半径为3,则幂级数nan(χ-1)n+1的收敛区间为_______.
设f(x)在x0的邻域内四阶可导,且|f(4)(x)|≤M(M>0).证明:对此邻域内任一异于x0的点x,有其中x’为x关于x0的对称点.
随机试题
__________是一种命令式票据,通常由商业信用活动中的卖方对买方或买方委托的付款银行签发.要求买方于规定日期支付货款。
一般情况下,无差异曲线的特点是()
肝门脉高压症食管静脉曲张破裂出血最易并发
下列荷载中,属于永久荷载的是()。
①第一本防水平装书还将拥有强大的防伪功能 ②澳大利亚的银行现在已经使用该项技术来延长纸币的使用寿命,同时减少伪造的风险③英国出版商近日透露,世界上第一本防水平装书有望明年夏天上架销售④书的外面还有一层防撕毁的坚韧的聚合物涂层,整本书
(2014青海32)民主化、信息化、全球化浪潮叠加,思想观念的裂变塑造了一个时代生机蓬勃的心灵图景,也提示我们,多元时代更需要凝聚共识,当观点_______,看法不尽相同时,共识是社会交流的基础。但多元并非意味着正确的价值不复存在,包容也不意味着可以___
李渔晚年创作的()是中国古代戏曲理论的集大成之作。
设函数y=1/(2x+3),则y(n)(0)=______.
1.在考生文件夹下创建一个名为“订单管理”的数据库,并将已有的employee和orders两个表添加到该数据库中。2.为orders表建立一个按降序排列的普通索引,索引名为je,索引表达式为“金额”。3.在“订单管理”数据库中新建一个
What’stheaverageincreaseperyearofforeignstudentpopulationintheperiodbetween1985and1990intermsofpercentage?
最新回复
(
0
)