首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(A)=f(B)=g(a)=g(b)=0,试证: 在开区间(a,b)内至少存在一点ξ,使
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(A)=f(B)=g(a)=g(b)=0,试证: 在开区间(a,b)内至少存在一点ξ,使
admin
2017-07-10
93
问题
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(A)=f(B)=g(a)=g(b)=0,试证:
在开区间(a,b)内至少存在一点ξ,使
选项
答案
构造函数F(x)=f(x)g’(x)一g(x)f’(x),由题设条件得函数F(x)在区间[a,b]上是连续的,在区间(a,b)上是可导的,且满足F(A)=F(B)=0。根据罗尔定理可知,存在点ξ∈(a,b),使得F’(ξ)=0。即f(ξ)g’’(ξ)-f’’(ξ)g(ξ)=0,因此可得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/5lt4777K
0
考研数学二
相关试题推荐
下列方程中有一个是一阶微分方程,它是[].
曲线与直线x=0,x=t(t>0)及y=0围成一曲边梯形.该曲边梯形绕x轴旋转一周得一旋转体,其体积为V(t),侧面积为S(t),在x=t处的底面积为F(t).
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求A的特征值与特征向量;
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.(I)写出f(x)在[-2,0]上的表达式;(Ⅱ)问k为何值时,f(x)在x=0处可导.
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ(a,b),使得f"(f)=g"(ξ).
(2012年试题,三)设(1)计算行列式|A|;(2)当实数a为何值时,方程组Ax=β有无穷多解,并求其通解.
(1999年试题,二)记行列式为f(x),则方程f(x)=0的根的个数为().
把第二行的一1倍分别加至其余各行,再把第一行的2倍加至第二行,得[*]
随机试题
促性腺激素释放激素以何种方式分泌?
男性,38岁,中度哮喘患者,就诊时下述指标中对于判断哮喘严重程度更为准确的是
损伤的处理不正确的有
下列有关劳动合同解除和经济补偿的说法正确的是:()
按照合同条款约定,变更的范围和内容包括()。
现代企业制度以完善的()制度为基础。
被称为“黑暗”感觉的是
国际直接投资理论中的折中理论有什么优势?你是否发现了它的弊端?折中理论是如何影响管理实践的?
Julieplanstoselldelicatepaperboxesinherretailshop.Thesellingpriceis$10,whilethecostis$5perunit.Thefixed
Shynessisthecauseofmuchunhappinessforagreatmanypeople.Shypeopleareanxiousandself-conscious;thatis,theyaree
最新回复
(
0
)